ATTAINABLE ARTIFICIAL GRAVITY & SPACE RADIATION PROTECTION SOLUTIONS FOR INTERPLANETARY SPACESHIPS

THESIS DEFENSE – 15 MAY 2020

Timothy Kyle Bishop

Sasakawa International Center for Space Architecture (SICSA)

TIMOTHY BISHOP

SICSA STUDENT

CONTRACT ENGINEER NASA JOHNSON SPACE CENTER – 4 YEARS ROBOTICS ANALYIST

US AIR FORCE – 14 YEARS (ACTIVE / RESERVE)
MECHANIC

APPRECIATIONS

Loving Wife and Parents

SICSA Faculty – Larry Bell | Olga Bannova | Kriss Kennedy | Larry Toups

SICSA Students – 3 Years of Memories

VISION

TO BUILD A FLEET OF VERSATILE SPACECRAFT, SENDING HUMANS ANYWHERE WITHIN THE SOLAR SYSTEM ... AND BEYOND

Problem Definition

Deep Space Mission Architectures discard hardware, increasing costs that create barriers for improvements to crew safety; bred a risk-acceptance culture for human spaceflight

Hypothesis

The construction and deployment of human-rated deep-space spacecraft is possible with current or near-term technologies; capable of integrating micro-gravity and space radiation countermeasures

Mission

Provide sound and feasible construction methodologies for a spacecraft that provides realistic solutions to mitigate two prominent technology gaps:

Artificial Gravity and Space Radiation Protection

Goals

- 1. Develop spacecraft habitat architecture capable of supporting human missions to various celestial bodies in the solar system
 - 2. Develop an artificial gravity system
 - 3. Develop space radiation countermeasures

Venus 30-Day Stay Mission*

1 Earth Departure: 2 June 2031

2 Venus Arrival: 25 September 2031

Venus Departure: 25 October 2031

Earth Arrival: 20 August 2032

SPACECRAFT MISSION'S

Spacecraft Concept of Operations: Venus-Earth-Mars Proposed Trajectories

Mars 30-Day Stay Mission*

5 Earth Departure: 12 April 2033

6 Mars Arrival: 9 October 2033

7 Mars Departure: 8 November 2033

8 Earth Arrival: 16 July 2034

15-May-2020

* NASA Ames Research Center Trajectory Brower

Human Risks

SPACE RADIATION

Galactic Cosmic Rays Exposure - Steady stream of radiation

Long term effects (decades) – not well understood

Cancers in various parts of body

Cancer in bone high risk

Offspring defects increased

Solar Particle Events Exposure – Extreme bursts of radiation

Short term effects (hours to days)

Possible fatal dosage delivered

Symptoms of acute radiation poisoning

Nausea, vomiting, disorientation, etc.

MICRO GRAVITY

Lack of gravity promotes bone and muscle loss

Bone loss – hips affected the most

Muscle atrophy

Vision impairment

Lack of smell and taste

ROTATING SPACECRAFT

Vestibular effects caused by rotating reference frames

Disorientation

Vertigo

Inner ear fluid shifts

RADIATION PROTECTION RESEARCH

Radiation Protection Simulation Results:

Minimum Required Hull: 10 cm Polyethylene Equivalent Shielding

Minimum Required Solar Storm Shelter: 35 cm Polyethylene Equivalent Shielding

CULLEN COLLEGE of ENGINEERING

Torus Habitat Considerations

Radius m (ft)	Ang Vel (rpm)	Centripetal Acc (g)	Surface Area m² (ft²)	Habitable Volume m³ (ft³)	Crew Size*
10 (33)	6	0.4	224 (2,411)	492 (17,375)	20
22.5 (74)	6	0.9	505 (5 <i>,</i> 436)	1,187 (41,919)	48
67 (220)	3.5	0.9	1,506 (16,210)	3,667 (129,499)	147

* Derived from NASA/TM-2015-218564

Copyright 2020, Timothy Kyle Bishop

ARTIFICIAL GRAVITY

10

67 Meter Radius

15-May-2020

ARTIFICIAL GRAVITY

Revised Torus Habitat Considerations

Radius m (ft)	Ang Vel (rpm)	Centripetal Acc (g)	Surface Area m² (ft²)	Habitable Volume m³ (ft³)	Crew Size
10 (33)	6	0.4	224 (2,411)	492 (17,375)	20
15 (49)	6	0.6	337 (3,627)	769 (27,157)	23
20 (66)	6	0.8	449 (4,833)	1,048 (37,010)	34

15-May-2020

Copyright 2020, Timothy Kyle Bishop

11

ROTATING SPACECRAFT EFFECTS

Coriolis Force Diagrams

CULLEN COLLEGE of ENGINEERING

Walking with rotation increases the feeling of "weight"

Walking against rotation decreases the feeling of "weight"

Ladder climbing "pushes" or "pulls" depending on orientation

Sleeping orientation head tilt on axis of rotation reduce Coriolis Force effects

Perceived "Weight" While Walking for 70kg (154 lb.) individual

	Torus Radius		
Movement Scenario	10 m (33 ft)	15 m (49 ft)	20 m (66 ft)
Walk with rotation, kg (lbs)	41.7 (91.9)	55.8 (122.9)	69.9 (154.1)
Walk against rotation, kg (lbs)	14.7 (32.4)	28.8 (6.4)	42.9 (94.6)
Jog with rotation, kg (lbs)	50.7 (111.8)	64.7 (142.6)	78.9 (173.9)
Jog against rotation, kg (lbs)	5.7 (12.6)	19.8 (43.7)	33.9 (74.7)

SPACECRAFT HABITAT MODULES

Command Module

Command & Data Handling Functions

Spaceship Telemetry

Center Module
Solar Storm Shelter
Main Systems Hub

Transit Module

Passage to Torus Section

Primary Storage

Junction Module

Cargo Vehicle Interface

Primary Utility Functions

Primary Crew Functions
Curved Geometry For Artificial Gravity

Provides science capabilities Large windows for planetary observation

Spaceship Habitat Assembly Time-lapse

1) Command Module and Center Module are installed. Note the cargo vehicles on the left hand side which continuously supply the Assembly Station

4) Inflatable modules are installed

2) Transit Modules are installed at all four locations on the Center Module

5) Science Module is installed at aft of the Center Module

3) Junction Modules are installed onto each Transit Module

6) The Inflatable Modules are inflated

15-May-2020

Spaceship Habitat Final Configuration

Isometric view of the completed Spaceship configuration

Aft isometric view of the Spaceship configuration, showing the Common Berthing Mechanisms and International Docking Adapters

Interior Outfitting

1) Components are packed in Junction Module, ready for assembly by crew

4) Internal walls are installed

2) Subfloor stowage and utility structure is installed

5) Crew compartments are installed, such as storage and furniture

3) Continuation of installation

6) Completed interior assembly with hallway walls

Spaceship Habitat Walkthrough

1) Command Module interior, fitted with 8 operations stations for spaceship keeping

2) Center Module interior with ECLSS, stowage and experiment racks

3) Crew ablutions module in the artificial gravity section, with washer/dryer unit, showers, basins and stowage

4) A multi-purpose section in the artificial gravity section fitted with desks and computers for work, as well as plants for the crew

5) Crew galley module in the artificial gravity section, with a kitchenette for cooking various types of food, refrigeration units, stowage and foldable table and chairs

6) Science module with a large number of experiment racks and computers

15-May-2020

Copyright 2020, Timothy Kyle Bishop

THANK YOU 15-May-2020 Copyright 2020, Timothy Kyle Bishop 18 Sasakawa International Center for Space Architecture **CULLEN COLLEGE of ENGINEERING**