SPAC 6405

Justin Lin

APS: Protecting Space Stations in LEO

Master's Thesis Fall 2020

OUTLINE

Why is the APS Needed?

ADDRESSING RISK TO SPACE STATIONS (IN LEO)

Large structures with long orbital lifespans

Carry important cargo: Humans!

LEO environment is filled with Resident Space Objects (RSOs)

- Source of mission risk
- High relative velocities lead to fatal collisions

National Aeronautics and Space Administration

The Short-Term Orbital Debris Problem

- · There is far more small debris than large debris
 - Mission-ending risk is driven by millimeter-sized OD in LEO, and sub-centimetersized debris in GEO, but there is a lack of data on such small debris
 - Conjunction assessments and collision avoidance against the large (≥10 cm) tracked objects only address <1% of the debris impact risk

THE ISSUE WITH CM-SIZED DEBRIS

Too big to be practically shielded against

ISS shielding limit: 1.3 cm @ 9 km/s, 45°

Too difficult to avoid using typical collision avoidance procedures

"If operators were to have a truly comprehensive set of conjunctions against all objects larger than 1 cm, they would likely be continuously conducting avoidance maneuvers at the risk of running out of fuel"

> - The technical challenges of better Space Situational Awareness and Space Traffic Management

A Station Based Active Protection System (APS)

APS HIGH LEVEL REQUIREMENTS

- 1. Enable the station to respond effectively to RSO threats in the cm size range
- 2. Reduce mission risk for the station regarding RSOs
- 3. Respond to RSO threats without creating more debris
- 4. Operate in a manner that does not pose a danger to other spacecraft
- 5. Complement future space situational awareness frameworks if possible
- 6. Aid in active debris removal if possible

DEVELOPING THE PROPOSAL

The APS needs to perform:

- 1. Detection of RSOs
- 2. Tracking
- 3. Threat Remediation

Results:

• Close approaches screened by ground radars and targets relayed to APS

Trade studies and

analysis of needs

- Cued detection, tracking, and ablation using **pulsed laser optical system**
- RSOs engaged for deorbiting* at least one orbit cycle before conjunction

Optical Methods

Active debris

Radars

Lasers

removal

BENEFITS

- Leverages existing space surveillance frameworks (ie: Space Fence)
- No collision avoidance planning needed
- Target information can be uplinked to APS just **hours** before conjunction
- Only high-threat RSO trajectories are considered (minimal false alarms)
- Approach is suitable for any station in LEO

Mission Architecture

1

Mission Architecture

Station

* DPSSL at TRL 6

Mission Architecture

Laser Performance Analysis

DEBRIS THREATS

Want to address **primary source** of RSO threats for the ISS trajectory

• 400 km altitude, 51.6° inclination

OFF-NOMINAL RSO TRAJECTORIES

Nominal case: Deorbit RSOs

Majority of expected debris flux in LEO

Focus of the analysis

Off-nominal cases: Orbit modification only (cannot reliably deorbit)

- Highly elliptical RSO orbits
- RSOs approaching near ±90° in azimuth
- Still enables conjunctions to be avoided

Satisfies high level requirements

Flux vs. Local Azimuth

19

Velocity Distribution

Debris Flux ($\#/m^{2}/yr/kps$)

ESTIMATING LASER OUTPUT ENERGY

Broken down into three phases:

1. Cued Detection

- Scanning uncertainty region for RSO
- 2. Tracking

Beam focused onto RSO for tracking

3. Laser Ablation

Ablate RSO until perigee lowered sufficiently (~ 150km altitude)

Each phase can be mathematically modelled...

$$E_{phase} = \int_{t_{phase}} W(t) PRF(t) dt$$

Laser Performance Analysis

* Pulse energy (W) depends on many factors (including range)

Total uncertainty region

Scan Area

TRACKING ANGLES AND RATES

- As a RSO approaches, the pointing angles and angular rates will vary
- Can obtain angles (Az, El) and rates (\dot{Az}, \dot{El}) during approach
- Want to limit rates to $\leq 1.5^{\circ}/s$

Example debris scenario

Closest approach to station: 12 km Relative velocity: 11 km/s Az: 45° El: 0° Perigee altitude: 397 km Apogee altitude: 782 km Laser PRF: 90 Hz

Maximum ablation range: 150 km

Values for initial debris orbit

RESULTS: PERFORMANCE

Phase	Laser Output		Typical C	Operating	Average Laser
	Energy (kJ)		Time (s)		Power (kW)
Cued	≤ 70	/	5 – 10		7 – 14
Detection					
Tracking	2-9		20 – 90		≤ 0.1
Ablation	30 – 130		3 – 20		7 – 9

Maximum of $\sim 120 \text{ s}$

RESULTS: PARAMETERS

Laser Performance Analysis

Implementation on ISS

R

SYSTEM SIZING AND DESIGN CONSIDERATIONS

ROM Mass, Volume, Power

- Several tons
- Primary mirror 1.5 m in diameter
- Burst power in the tens of kW

Energy storage in Li-Ion batteries, charged by station power system

- Structural, Power, Data connections
- Unobstructed line of sight to RSOs during approach
- Flexible mounting system design for adaptability across stations

System Conceptual Design Mounting Location

ISS EXTERNAL PAYLOAD LOCATIONS

- ELC / ExPRESS
 Payload Adapters
- Columbus External Payload Facility
- JEM External Facility

ISS EXTERNAL PAYLOAD LOCATIONS

	ELC / ExPRESS Sites	Columbus EPF	JEM – EF	
Payload Mass Limit	227 kg	230 kg	500 kg standard 2500 kg heavy	Too light
Payload Envelope	34 in x 46 in x 49 in (1 m ³)	34 in x 46 in x 49 in $(1 m^3)$	73 in x 32 in x 39 in (1.5 m^3)	Very restrictive envelope
Available Power	750 W	2.5 kW (shared)	3–6 kW	

Additional problem: Poor viewing angles

Implementation on ISS

INTERFACING TO ISS

- Utilize a Power Data Grapple Fixture (PDGF) for system mounting
 - Can supply power (~ 2kW), integrated data connection, extensive use on ISS
- Provides an easy, flexible interface between APS and station
- Installed at suitable location on ISS Integrated Truss Structure (ITS) to facilitate line-of-sight requirements

POWER ANALYSIS

- Based off laser performance results
 - Laser electrical to optical efficiency: 32%

Phase	Maximum Laser Input Power (kW)	Waste Heat (kW)	Active Thermal Control (kW)	Battery Output Power (kW)
Cued Detection	44	30	14	58
Tracking	0.3	0.2	0.1	0.4
Ablation	28	19	9	37

Reasonable for Li-ion cell configurations

BATTERY SIZING AND RECHARGING

For each RSO interaction

Laser Input Energy	653 kJ
Active Thermal Control Energy	209 kJ
Total Energy Discharged Per RSO Interaction (30% margin)	1121 kJ
Total Battery Mass (Li-ion)	8.3 kg
Recharge Time (at 1.2 kW)	16 minutes

Using commercial Li-ion cells: 125 WHr/kg

Remaining 800 W for keep-alive activities

Implementation on ISS

33

CONCEPTUAL DESIGN

- Optics mount requires rotation about two axes (Az and El) for precision pointing
- To avoid line of sight obstructions, APS positioning should be flexible
 - A robotic arm enables optimal positioning for **every unique encounter**
 - Longer arm permits more flexible response for every scenario (including offnominal cases) but increases mass and system complexity

PRELIMINARY MASS BUDGET * Values are ROM

Subsystem	Mass (kg)	Margin (%)	Totals (kg)
Structures and Mechanisms	1200	25	1500
Laser	1100	25	1375
Optics	35	15	41
C&DH	10	15	12
Thermal Control	1000	25	1250
Communications	30	15	35
PMAD	500	25	625
	4840		
U	726		
	5565		

Implementation on ISS

CONTINGENCY SCENARIOS

Scenario	Possible Actions
RSO on possible impact trajectory upon detection	 Provide crew with advance warning (tens of seconds) Estimate most likely location of impact
ISS in attitude other than +XVV / Obstructed line of sight	 Change APS positioning Engage at different times in RSO trajectory (previous orbit cycles) Relocate APS onto MBS and translate to different position on truss
Off-nominal RSO trajectories	 Use APS for orbit modification instead of deorbiting Conduct collision avoidance maneuvers
Expected APS operational time conflicts with ISS Ops timeline	 Determine if relocating APS (via MBS) enables conflict to be resolved Engage at different times in RSO trajectory (previous orbit cycles) Revise ISS Ops timeline

- Cm-sized debris present an evolving issue not properly addressed today
- APS is a pulsed laser optical system that can be used to defend space stations from these threats Applicable to different stations / orbits in LEO

Future Research...

- Assessing system parameters for off-nominal RSO trajectories
- Maturing high energy lasers for use in space environment
- Commercial usage (ie: GEO satellite tracking service)
- Political / legal implications

Pentagon Wants to Test A Space-Based Weapon in 2023

Defense officials have asked for \$304 million to fund research into spacebased lasers, particle beams, and other new forms of missile defense next year.

Thank You! Questions?

R

Backup Slides

78

THE LEO ENVIRONMENT

- Over 900,000 Resident Space Objects (RSOs) >1 cm (~ 2000 active satellites)
- Highest RSO spatial density in LEO
- RSO population will continue to rise
 - Increased LEO usage (mega-constellations)
 - Increased collisions: "Kessler Syndrome"
- Impact with RSOs >1 cm is typically fatal

SPACE Surveillance

- Approx. 4% of LEO RSO population tracked by U.S. Space Surveillance Network (SSN)
- For LEO coverage, Phased Array Radars used:
 - Current capabilities: RSOs down to ~10 cm
 - U.S. SSN public catalog:
 ~23 000 tracked objects
- Future SSA capabilities:
 - RSO tracking down to ~2 cm
 - Expected catalogue growth:
 >250 000 tracked objects

2-D Directional Flux

10^-16

TRADE STUDIES: DETECTION AND TRACKING

- Continuous uncued detection
- Scanning through all RSO approach angles
- Sensitivity to detect cm sized RSOs at hundreds of km

Criteria too difficult to meet practically

Candidate Methods (Space-based)	Optical	Radar	Laser Optical	
Туре	Passive	Active	Active	
Characteristics	Wide FoV camera	Phased array radar; mmWave bands	Scanning LiDAR; Flash LiDAR; Hybrid Too much	
Mass	Hundreds of kg	Thousands of kg	Thousands of kg power req	uired
Power	Minimal	>> kW	≥ kW operations	ious S
Limitations	System dependent on solar illumination	Heavy phased array antenna; Very high power requirements	Heavy laser and optics system; Complex mechanical design	
Restric	ted			
operatio	onal times Pro	posed System		54

TRADE STUDIES: RSO REMEDIATION

Eliminate or deflect incoming RSOs

Act over short timescales (seconds)

Act on small RSOs at long range (hundreds of km)

Only laser-based methods are feasible

Candidate Methods (Laser-based)	Laser Photon Pressure	Continuous Wave (CW) Laser Ablation	Pulsed Laser Ablation	
Action	Orbit Modification	Vaporization / Orbit Modification	Orbit Modification	Only
Acting timescale	Long; Days – Months	Short	Short	suitable
Comments	Applied forces too small; only useful for long term orbit perturbation Long timescales	Requires too much energy; Messy ablation process creating debris; Unreliable impulse generation	Good momentum coupling; No generation of new debris; Moderate energy requirements	Choree
	only	Proposed System	sy and eliable	55

RSO INPUT PARAMETERS

Local Azimuth	Local Elevation	Relative Velocity
(Az)	(El)	(km/s)
0°	0°	15.4
15°	0°	14.9
30°	0°	13.4
45°	0°	11
60°	0°	7.9
75°	0°	4.4