Hyper Inflatables: Prefabricated Membranes and 3D Printed Exoskeletons in Space

Zachary Taylor

credit: NASA

credit: SpaceX

credit: Foster & Partners / ESA

credit: NASA

Kibo

MPLM

Zarya

Proposed Apollo-Era Station credit: NASA

Toroid inflatable station concept credit: NASA

The Echo 1a credit: NASA

SLS Block II Fairing Volume: 1,166 m³

Weight: 100,000 kg

BFR Cargo Fairing

Volume: 780 m³ Weight: 70,000 kg Volume: 80,563 m³ Ø: 53 m

B330 330 m³ **B2100** 2100 m³ **No Exoskeleton** 1500 m³ **Exoskeleton** 25000 m³

Manipulated Volume

20000 m³

Mission Outline

Objectives

Study the long-term effects of 1/6th gravity on humans, astronomical study during dark phases, act as a construction material hub for projects in and around cis-lunar space, serve as a fuel depot, EVA capabilities for exploration, and a testbed for permanent space agriculture.

Site

Permanent base at the Peary Crater in the Lunar North Pole.

Crew

The base can support a rotating crew of 20-30.

Architectural Program

20 separate crew quarters, galley, science stations, exercise facility, medical facilities, 6 bathrooms, hygiene stations, manufacturing shop, greenhouse, laundry, at least 2 airlocks, operations control room, recreation facility.

Assumptions

- The fully realized BFR rocket is relative in size and function to the version presented at IAC 2017 conference.
- The remaining fuel of the BFR rocket on the moon's surface is around 110 tons (half empty).
- Advances in space-applicable robotics continue, particularly ones for construction which are an aspirational element of the project.
- There is a growing commercial and industrial demand for space in the Cis-lunar region.
- An inflatable membrane thickness of 8-12 cm utilizing advanced materials is sufficient to block out micro-meteorites and most radiation.
- The inflatable will have two means of egress.

Crew Configuration

Cargo Configuration

Cargo + Crew Configuration

Pressurized volume

3D Printing Material (AISiC)

ISRU Collector & Processor

expansion, crack-resistance, class 1 grade material by ESA testing, very high chemical and corrosion resistance, no porosity.

3D Printer Rover

ISRU to 3D Printer Transfer

3D Printer Truss

Heat Panels

Made of Minco Polyimide Thermofoil, which work in (-200)°C to 200°C temperature ranges and are NASA approved. The panels require 17.49 watts per 1 unit (as drawn) to heat to 130°C, the necessary temp to cause the carbon fiber to revert to its original position. It takes 15 minutes for each section to be deployed.

1 unit (as drawn to the right) Volume: 8,714.78 cm3 Total Weight: 15.60 kg 22 meter length (20 meter structure): 0.630 meters folded (7 Units) Total Weight: 109.20 kg

3D Printer Truss

Heat Panels

Made of Minco Polyimide Thermofoil, which work in (-200)°C to 200°C temperature ranges and are NASA approved. The panels require 17.49 watts per 1 unit (as drawn) to heat to 130°C, the necessary temp to cause the carbon fiber to revert to its original position. It takes 15 minutes for each section to be deployed.

Volume: 8,714.78 cm3 Total Weight: 15.60 kg Total Weight: 109.20 kg

22 meter length (20 meter structure): 0.630 meters folded (7 Units)

3D Printer Truss

Heat Panels

Made of Minco Polyimide Thermofoil, which work in (-200)°C to 200°C temperature ranges and are NASA approved. The panels require 17.49 watts per 1 unit (as drawn) to heat to 130°C, the necessary temp to cause the carbon fiber to revert to its original position. It takes 15 minutes for each section to be deployed.

1 unit (as drawn to the right) Volume: 8,714.78 cm3 Total Weight: 15.60 kg 22 meter length (20 meter structure): 0.630 meters folded (7 Units) Total Weight: 109.20 kg

Made of Minco Polyimide Thermofoil, which work in (-200)°C to 200°C temperature ranges and are NASA approved. The panels require 17.49 watts per 1 unit (as drawn) to heat to 130°C, the necessary temp to cause the carbon fiber to revert to its original position. It takes 15 minutes for each section to be deployed.

Volume: 8,714.78 cm3 Total Weight: 15.60 kg Total Weight: 109.20 kg

30 meter length (20 meter structure): 0.630 meters folded (7 Units)

Science	Hygiene	Maintenance & EVA							
Life Support	Power Supply	Public & Private Areas							
Air & Water Contaminant Detectors 5 square meters	Laundry 5 square meters	Medical Facility 35 square meters	Exercise Chamber 50 square meters	Food Production 200 square meters	Workshop 50 square meters	EVA Vehicles 100 square meters			
Waste Recovery and Treatment 10 square meters	3 Toilets 15 square meters	Recreation 30 square meters	Galley + Dining 120 square meters	General Laboratory 50 square meters	Equipment Storage 20 square meters	Airlock Nodes 10 square meters			
Thermal Control and Waste Heat Rejection 15 square meters	Humidity Control 5 square meters	2 Hand Washing Stations + 4 Shower 40 square meters		Base Operations Control Room 60 square meters	2 Shower + 2 Hand Washing Stations 20 square meters	ISRU Collection (Water) 10 square meters			
		Crew Quarters 100 square meters		Astronomical Observatory 20 square meters	Food Storage 40 square meters	Portable Water Supply 40 square meters			

Fuel Depot 100 square meters Solar Array Field 550 square meters

Total Volume 23000 m³

ECLSS & Subsystems

Columns + Levels

Interior Perspectives

Thank You

Future and Current Rocket Arsenal

Examined Materials Chart

Proposed Material Characteristics	Content	Tensile Strength	Density	Melting Point	Young's Modulus	Key Advantages	Key Disadvantages
Aluminum (Weldalite 049-T8)	97-98% Aluminum, 2-3% Lithium	710 MPa	2.66 g/cm ³	600-655°C	69 GPa	Proven for space applications, has been selected as metal of choice of Orion capsules. Corrosive resistant.	Does not take blunt forces well. Medium weight
Aluminum Magnesium Silicon Alloy	Aluminum, Magnesium, Silicon	230 MPa	1.80 g/cm ³	436°C	48 GPa	Lightest structural material. Used when high strength is not necessary, but where a thick, light form is desired, or if higher stiffness is needed.	Temperatures as low as 200 °F (93 °C) produce considerable reduction in the yield strength.
Carbon Fiber (IM10)	95% carbon, 5% resin	3310 MPa	1.79 g/cm ³	3652°C Resin: 260°C	30 GPa	Does not fatigue, high stiffness, high tensile strength, low weight, high chemical resistance, high temperature tolerance and low thermal expansion, non poisonous, biologically Inert and is a shape-memory polymer, non-corrosive.	At temperatures above 66°C, carbon fiber resin strength will be reduced. Cannot easily handle Isotrophic force, strength focused on direction of fiber.
Aluminum 6061	1-4% Magnesium, <1% Silicon, 95-98% Aluminum	290 MPa	2.70 g/cm ³	585°C	68.9 GPa	Great tension strength, very common aluminum product in aircraft structures. Corrosion resistant. Very wieldable. Verified as stable in ultra-high vacuum chambers.	Not very strong against brunt forces.
Aluminum 7075	2-3% Magnesium, <1% Magnese, 98-97% Aluminum	572 MPa	2.81 g/cm ³	635°C	72 GPa	Corrosion resistance, no exhibit age hardening, nor does it need a precipitation heat treatment to promote hardening. Weldability is good.	Machinability is only fair to poor.
Aluminum Silicon Carbide (AMC640XA)	40% Silicon Carbide, 60% Aluminum	570 MPa	2.90 g/cm ³	400°C	40 GPa	Wear resistance, Low coefficient of thermal expansion, crack-resistance, class 1 grade material by ESA testing, very high chemical and corrosion resistance, no porosity.	Very new material that hasn't been used in space structurally yet.
Ferrosilicon	Silicon, Iron	1,586 MPa	6.70 g/cm ³	4892°C	206 GPa	Lighter than aluminum based alloys,	Very prone to get rusty, requires resin to protect it. Not a strong tensile material, flamable, not bendable.

Unit Legend					
Mpa: Megapascals	GPa: Gigapascals	mm: Millimeters	cm: Centimeters	g: Grams	°C: Celsius