Conceptual Design of Commercial Cislunar Space Station for Large Scale Space Development

Shunsuke Miyazaki Supervisors: Dr. Olga Bannova Prof. Larry Bell

SICSN

Sasakawa International Center for Space Architecture

Cullen College of Engineering University of Houston

Table of Content

- Introduction
- Con-Ops
- Design Overview
- Internal Layout Overview
- Assembly Sequence
- Introduction of Ixion Module
- Design Requirement
- Functional Requirement
- Assembly Requirement
- Assembly Process

Introduction: Mission Statement and Goal

Mission Statement: Design, Build, and Deploy Commercial Lunar Orbit Station by 2040

- Mission Objective: Support ULA's Cis-Lunar-1000 after 2045
- 1. To study and develop Future technology
- 2. To develop testbed to study future long-human space flight
- 3. To develop waystation to enable to access to various destination
- 4. To encourage commercialization of Cis-lunar space

Introduction: Mission Assumption

□ Assumption

- LOP-Gateway will start building and operating from 2025
- Initial unmanned and manned lunar and mars exploration has started
 - Environment Assumption
 - ISRU on the Moon

>400mT/year by 2037

Population on the Moon at 2045 through a year

42 tourists (1month stay) ×170

128 crew (3~6 month)

Need 50 people Transition every month

Design Requirements

□ AXIS Design Requirement

12 crew members (nominal), for 180 days without Resupply

- Closed-Loop ECLSS (95% Water Recovery, >85% CO2 recovery)
- Depends on both Earth and Lunar resupply
- Friendly User Interface

=15yrs

- > Well designed for
- Protect Crew from SPE, GCR
- Allow to berth/ docking following vehicles concurrently;
 - $2 \times Cycler$
 - 4 × Lunar Lander
 - $2 \times Cargo$
- Allow to berth following vehicles on the truss;
 - 10 × Modular Lander
 - 2 × Crew Vehicle
 - $1 \times Cargo$

Introduction: High-Level Requirements

ON COM

□ Science and Technology Requirements

Science & Technology

Remote Operations Support

Human Factor and Health

Small Satellite Service & Communication

Orbit Manufacturing

Safe Heaven & Rescue Operation

On Orbit Assembly & Maintenance

Design Overview: Orbit Selection

Near Rectilinear Halo Orbit

Orbit Characteristic		
Orbit Period	6-8 days	
Lunar Amplitude Range	2000-75000km	
Station Keeping	10 m/s per year	
No communication Occultation		
Radiators are sufficient for Heat Rejection (62W/m ²)		

Introduction: Transportation System

Assumption: Available Elements

Lunar Crew Cycler

Adaptable to Vulcan Fairing

Lunar Cycler

# of Crew	15
Support Duration (days)	30
Pressurized Volume (m ³)	400

Design Overview: Available Element

Modular Systems

Modular System		
Mass of Structure	2783 kg	
Mass of Propellant	6748 kg	
Max. Mass of Cargo	8370 kg	

Crew Lander

Pressurized Volume 20 m³

8

7 days

of Crew

Support Duration

Service Module

Cargo Transporter

Crew Transfer Vehicle

Space	Tug
Space	Tug

l andar
Lander

Mission Assumption: Available Element

Introduction: Mission Timeline, Phase 1 Preparation

Introduction: Mission Timeline, Phase 2 Building

Overview Design of Axis Station

Design Overview: Utility Module

□ Li-Ion Battery

- NRHO Total Eclipse Time = Max. 3hours
- Baseline Power = 80kW
- Total Required
 Capacity = 240kWh
- # of Li-Ion Battery Cell= 1367 cells
- \succ Mass = 783kg

Design Overview: Articulated Octa. Truss Systems

Design Overview: Design Concept of Habitation

□ ISS or DSG derived Habitation Modules

BA330

Node

Airlock: MASH (Minialistic Soft Structure Hatch)

BA330		
Length (m)	13.6	
Diameter (m)	6.7	
Volume (m ³)	330	

Node	
Length (m)	6.5
Diameter (m)	4.4
Volume (m ³)	97.2

MASH Airlock		
Length (m)	5.3 m (MASH: 2.3 m)	
Diameter (m)	4.4 m	
Volume (m ³)	75.76	

Design Overview: Design Concept of Habitation

□ ISS or DSG derived Habitation Modules

Cygnus Docking Node

Node	
Length (m)	7.7
Diameter (m)	4.4
TRL	6

Design Overview: Design Concept of Habitation

□ ISS or DSG derived Habitation Modules

242m³

Volume

Design Overview: Functional Layout

□ Functional Proximity

Mission Objective : Ixion Module

□ Ixion Module **Goal:** Convert LH2 tank into habitation module **Objective:** Crew Quarters, Kitchen, Wardroom, Hydroponics, and stowage **Functional Requirement:** Air ventilation, ECLSS sensor, fire suppression, LED light, Communication system, Power, water line **Assembly Method**: Autonomous Robot with partially human support

Structure Modification: Ixion Module

□ Fuel Depot Modification

- Customized Ixion Detail
- IDSS port at the each end of the fuel tank
- One end node attached on the mid-deck

Length (node to node) = 14.7m Dry mass = 12.8mT Volume = 242m³

Structure Modification: Ixion Module

□ Fuel Depot Outer Shell Modification

- Functional Requirement for both fuel depot and habitat
- Depot: < 0.1%/ day LH2 boil-off rate
 Habitat: Protect from GCR and SPE 10g/cm² Al equilibrium Internal pressure = 101 kPa Safety factor = 2.5
 - Total Mass of External wall = 12.18mT
 Total Tank Mass = 13.9mT

Design Overview: Ixion Module

□ Node and Hatch Design

Enhanced End-Cone (Aluminum)

Access Hatch

Design Overview: Ixion Module

Internal Tank Structure

Overview of Internal Tank Structurel

Internal Tank Structure

□ Overview of Internal Wall

□ Attachment and secure Mechanism

Internal Wall

End Dome CFR plate

Internal Wall

□ Radiation Shield: Heat Melting Compactor (HMC) Plate

- Outer Shell Shield =10 g/cm² Al equilibrium
- Inner Shell Shield > 13 g/cm² Al equilibrium
- \succ HMC plate = 60% of PE equilibrium
- > Total thickness of HMC tile = 11.4cm (n=3) = 9.86 g/cm² Al
- Estimated Compressed MCTB Thickness = 5cm = 7 g/cm² Al
- > Total inner radiation shield = $16.86 \text{ g/cm}^2 \text{ Al}$

HMC tile: 40.6×40.6×3.8cm

- Input = 1100kg garbage, Output = 800kg HMC tile
- Required: 6336 kg HMC = 8,712kg garbage
- ➤ 4 crew for 10 years at DSG from 2025

= 16,060kg garbage

➤ 4 crew for 5 years on the Moon from 2030

= 8,030kg garbage

□ HMC Radiation Shield

Total 570 MCTB or 1710 HMC tiles

Diffuser, LED lighting, Sensors

Utility Connector

Diffuser, LED lighting, Sensors

Utility Connector

Ixion Outfitting: Functional Arrangement

Starboard

A

Nadir

Craw Quarter

- CQ Functional Requirement:
- Air Ventilation
- LED Light
- Utility cable

Craw Quarter Assembly

10

□ Kitchen/ Wardroom

□ Virtual Window/ Projector

Folded (Thickness: 0.14m × L: 0.8m × H: 2m)

□ Hydroponics

Collapsible Hydroponics

Fertilizer, CO2 tank, Control Assembly

Fluidic& gas Line

Cargo

- > Ixion has capability to store $18m^3$ ($2m^3$ each stowage)
- Cloth, food, spent items, spare parts,

Ixion Outfitting: Hardware Requirement

Ixion Outfitting: Hardware Requirement

Robonaut 2

Ixion Outfitting: Hardware Requirement

- **RFID:** Radio Frequency Identification
- Identify the location of the Cargo
- " Just-In-Time" system

A: A2R, R: R2, H: Human

1. Vent all residual Propellant and gas

2. Transfer to AXIS

Space Tug

4. Bleed O2 and N2, Stabilize inner temperature

H 5. Crew open the Hatch A: A2R, R: R2, H: Human

H 6. Install Target Marker H 7. Install MT and Scanner

8. Scan Internal Tank

A: A2R, R: R2, H: Human

H 9. Install A2R

A: A2R, R: R2, H: Human

R 12. Attach Secondary Structure

13. Attach Manifold

Α

14. Install Diffuser & Return Air Fan Assembly

A: A2R, R: R2, H: Human

R 15. Connect Duct Hose

16. Install LED and Utility Board

R 17. Cable Connection

A: A2R, R: R2, H: Human

A H

18. Kitchen

A 19. Install Projector

A H 20. Install Hydroponics

A: A2R, R: R2, H: Human

A H 21. Install Crew Quarters

A: A2R, R: R2, H: Human

A H 22. Remove rail

A 23. Install CFR plate and HMC wall

A: A2R, R: R2, H: Human

A H 24. Install Cargo

Future Consideration

How to convert a spent stage rocket into hab.
 Application for lunar base or deep space exploration habitatation

