CONDITIONS FOR MAKING LUNAR ISRU VALUABLE FOR A MARS-FORWARD FUTURE

Sylvester ‘Sly’ Hampton | Slyshampton@gmail.com | 5/15/2020
About Me

Sylvester ‘Sly’ Hampton

2005 – Present | Eagle Scout

2013 – 2017 | B.S. Architecture

2019 – Present | Contract Engineer
Vision Statement

“To enable humanity’s expansion off-Earth for: permanent exploration, development, and settlement towards a Mars-forward future.”
Previous Research Findings
(Orbital Refueling Depot)

- SpaceX’s Starship Architecture
- Lunar propellant sent to LEO is not cost-effective
 - ΔV from LLO to MTO = ~1.3 km/s
 - ΔV from Lunar Surface to MTO = ~3.03 km/s
 - ΔV from LEO to MTO = ~3.6 km/s
- Large volumes are problematic
 - More infrastructure needed for ISRU plant
 - Greater up-mass cost
 - Ferry propellant back and forth with Starship vessel
 - Higher frequency of launches
- ISRU infrastructure investment is the only net benefit
“What are the CONDITIONS to make LUNAR ISRU VALUABLE for a Mars-forward future?”
ISRU: Water-Ice → Oxidizer & Fuel (in a commercial venture)

Major System Elements:
- Excavation
- Transportation
- Processing
- Storage
- Power Generation

Excavation and Transportation systems are outside of the scope of work, and I do not include them in the energy requirements or trade space
Commercial Viability

It is important for any commercial-space venture to understand the variable investments costs that must be made early-on, and their expected yield over time to characterize their cross-over point of business viability.

Projected Variable Cost Curve

Projected Yield Curve
Commercial Viability

At the cross-over point, a business decision can be made to reinvest earnings to improve their overall system’s functionality and capabilities. Otherwise, it provides a proof-of-concept and viability, and can be sold off.
Baseline Assumptions

Existence and ease of accessibility to boundless water-ice deposits at the lunar south pole
- Data from LCROSS & LRO have both acquired significant evidence
- NASA’s Volatiles Investigating Polar Exploration Rover (VIPER) will investigate the south pole in Dec. 2022.

Market Demand:
- ULA’s Advanced Cryogenic Evolved Stage (ACES)
 - Orbital Refueling Depot Architecture
 - Masten’s Xeus Lunar Lander

Autonomous Operations (with minimal, remote, human oversight)
- Nominal operations for entire mission duration
Commercial Architecture

ACES-Xeus based architecture
- LOX/LH$_2$ Fuel
- ACES: 68MT tank size
 - RL-10 Engine oxidizer-to-fuel ratio (5.88:1)
 - 9.88MT LH$_2$
 - 58.09MT LOX
- Xeus: 25MT to EML-2 (ORD location)

Processing Plant
- Sublimation & Electrolysis

Cryogenic Storage
- LOX = 90K; LH$_2$ = 20K

Power Generation System
Commercial Architecture

Extraction & Transportation Systems are assumed
- No impact to power generation system requirements or trade decision

Processing System
- 10MT of LH₂ (9.88MT tank size + Margin of Error)
- 58.09MT of LOX
- Annual refuel rates of 1x, 2x, and 5x

Cryogenic Storage (IRAS)
- Integrated Refrigeration and Storage | NASA KSC
- Brayton Helium Refrigerator
- Proven technology that can hold LH₂ for indefinite time periods w/out boil-off for ground-based purposes (GODU-LH₂ Project)
Evaluation Metrics & Design Criteria

Energy (Power Generation System Trade)
- Output Rate (24-Hr Utility)
- Scalability (Density of kWh capabilities)

Risks
- Nominal Autonomous Operations
 - System level
 - Rendezvous
- Maintenance
 - Redundancy
 - Repairability
- Propellant Transfer Loss
 - ZBO technology and insulation integration
ACES Tank Size = 68MT
- 10MT LH₂ & 58.09MT LOX Needed

Sublimation
- Specific heat change of <110K → 298K (ΔT = 188K)

Electrolysis
- \[2\text{H}_2\text{O}(l) + \text{Electrical Energy (285.6kJ)} \rightarrow 2\text{H}_2(g) + \text{O}_2(g) \]
- Propellant ratio ≠ Electrolysis ratio (LH₂ is the bottle neck)

89.93MT of Water-Ice must be processed (including margin of error)
- Surplus of 21.84MT LOX after each refuel cycle
- 89.93MT < Mass of regolith that will be processed (Outside scope)

Brayton He Refrigerator power consumption = 7.69 kWh/kg(LH₂)
Data Visualization

Total Values:
- 1x/yr. = 126kWh
- 2x/yr. = 230kWh
- 5x/yr. = 543kWh

It is important to note that these are conservative figures.

Nuclear fission reactors would be able to redirect their waste heat into the sublimation process, the most energy intensive step, and reduce the total ΔT required.
Power Generation Trade Factors

Nuclear Fission
- Constant & reliable 24hr generation
- Ancillary benefits of waste heat generation to ease sublimation process
- >80x more efficient power density (land use)
- Utility-Scale Power (KRUSTY)
 - Kilopower Reactor Using Stirling Technology
 - KiloPower project led to, a currently under-development, MegaPower project by Los Alamos Labs in conjunction with NASA

Solar (PVAs, Reflectors, Etc.)
- Limited 24hr generation ability
 - Power fluctuations likely
 - On-orbit infrastructure may be required
- Battery backup storage required
 - Additional up-mass
- Inefficient land use
 - Constraints on PVA locations will be set by inclination relative to the sun
 - Surface area that PVA field uses will not be accessible to mine or place other infrastructure
Required Number of Reactors:

- 1x/yr. = 13
- 2x/yr. = 23
- 5x/yr. = 55

of reactors are over-estimates

- The waste heat from these reactors has not been publicly shared; however, the Stirling engine necessitates the rejection of waste heat, so this is a non-zero figure.
- 2MW reactors may be available in the near future which would bring the reactor number down to one.
Value Proposition

Space Policy Directive 1: Return humans to the Moon, and use it as a test bed for future Mars missions.

NASA has identified water to be one of the most valuable commodities off-Earth, since it has applications for both human consumption and rocket propellant. This project provides an overview of requirements on a commercial lunar ISRU plant, and a business strategy to become a viable industry, long-term.
Next Steps
Path Forward

- **Design and development** of the Excavation and Transportation Systems
 - Incorporate emergent technologies
 - Characterize their power needs

- **Find other revenue sources**
 - Detail how surplus of LOX will be used
 - Specify expected market demand (ACES, Artemis, Gateway, etc.)

- **Develop master plan** of all integrated elements
 - Point A to B, to C… etc.
 - Identify investment costs
 - Determine business case

This research is anticipated to influence students, entrepreneurs, mission planners, and policy makers, by showing viability of off-Earth manufacturing for future space commerce.
Thank you for listening!

Does anyone have any comments or questions?

Sylvester ‘Sly’ Hampton | slyshampton@gmail.com | (847) 970-2299
Back-Up Material
Evolutionary Needs

- Sublimation & Electrolysis of water-ice
 - Power requirements & scale derived from known processes and proven hardware to confirm feasibility study

Demand

- Scaled to match concept of operations
 - Refueling ACES 1x, 2x, or 5x per year

SCALE

Availability

- Assumed availability and accessibility
- Excavation is outside of scope – unable to characterize until VIPER rover confirms hypotheses and composition
(Initial) Thesis Question

“How would propellant delivered from lunar ISRU compare to SpaceX’s baseline Mars Mission Architecture, of Earth to LEO refueling, based on cost and risk?”

At BEST, LOX from the moon is \(~21\%\) MORE EXPENSIVE than LOX from Earth.

- Launch Cost : \(\sim\$20M\)
- 6 Launches to LEO for Moon Landing
- 150mt / Launch
- Buy/Sell Price: $0.8M/t \((=\text{FREE} / \text{@ Cost})\)

\[
\begin{align*}
1.) & \quad 20M (6) = 120M \\
2.) & \quad \frac{120M}{150mt} = \frac{0.8M}{t} \\
3.) & \quad 0.8(150mt) = 120M \\
4.) & \quad (940t \times .6) + 150mt = 714mt \\
5.) & \quad 714mt (0.8M) = 571.2M \\
6.) & \quad 571.2M + 120M = 691.2M \\
7.) & \quad \frac{691.2M}{714mt} = 0.97M / mt \\
8.) & \quad 1.21 (0.8M) = 0.97M
\end{align*}
\]
ConOps Overview

SpaceX’s Baseline DRA

<table>
<thead>
<tr>
<th>1x: Crewed launch – 150mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x: Tanker launch, rendezvous, & land</td>
</tr>
</tbody>
</table>

Trans-Mars Injection (TMI)

Gateway Depot

<table>
<thead>
<tr>
<th>1x: Lunar ISRU Cargo launch – 70mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x: Tanker launch, rendezvous, & land</td>
</tr>
</tbody>
</table>

Trans-Lunar Injection (TLI)

ISRU on Moon for ~2 years (250mt of LOX/yr)

1x: Deliver LOX to Gateway in NRHO

<table>
<thead>
<tr>
<th>1x: Crewed launch – 150mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x: Tanker launch, rendezvous, & land</td>
</tr>
</tbody>
</table>

LEO to NRHO

Rendezvous/Refuel

Trans-Mars Injection (TMI)

LORD Architecture

<table>
<thead>
<tr>
<th>1x: Lunar ISRU Cargo launch – 130mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x: Tanker launch, rendezvous, & land</td>
</tr>
</tbody>
</table>

Trans-Lunar Injection (TLI)

ISRU on Moon for ~2 years (500mt of LOX/yr)

<table>
<thead>
<tr>
<th>1x: Moon to LEO parking orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x: Crewed launch to LEO – 150mt</td>
</tr>
</tbody>
</table>

Rendezvous/Refuel

Trans-Mars Injection (TMI)
<table>
<thead>
<tr>
<th>F.O.M.</th>
<th>Baseline</th>
<th>Gateway Depot</th>
<th>LORD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>∞</td>
<td>250mt /yr.</td>
<td>500mt /yr.</td>
</tr>
<tr>
<td>Acquisition</td>
<td>$+1$ Day(s)</td>
<td>\sim2 Years</td>
<td>\sim2 Years</td>
</tr>
<tr>
<td>Future Development</td>
<td>Status Quo</td>
<td>Adds to Lunar Surface & Gateway Functionality</td>
<td>Critical Infrastructure that brings the Solar System closer to LEO</td>
</tr>
<tr>
<td>Risk (LOM or LOC)</td>
<td>Autonomous rendezvous 5x in LEO</td>
<td>\simBaseline with added complexity</td>
<td>Higher probability of LOM than LOC</td>
</tr>
<tr>
<td># of Launches</td>
<td>6</td>
<td>\geq12</td>
<td>\geq8</td>
</tr>
<tr>
<td>Launch Cost (M)</td>
<td>\sim131.4</td>
<td>\sim302.22</td>
<td>\sim297.11</td>
</tr>
<tr>
<td>Total Score</td>
<td>11</td>
<td>22</td>
<td>15</td>
</tr>
</tbody>
</table>

Score Scale:
1 - Best
2 - Good
3 - Bad
4 - Worst

Legend:
- Green: Best
- Orange: Good
- Red: Bad
- Yellow: Worst