

CONDITIONS FOR MAKING LUNAR ISRU VALUABLE FOR A MARS-FORWARD FUTURE

Sylvester 'Sly' Hampton | Slyshampton@gmail.com | 5/15/2020

About Me

2005 – Present | Eagle Scout

2013 – 2017 | B.S. Architecture

Sylvester 'Sly' Hampton

2019 – Present | Contract Engineer

ЅҎАСЕ

"To enable humanity's expansion off-Earth for: permanent exploration, development, and settlement towards a *Mars-forward* future."

Previous Research Findings (Orbital Refueling Depot)

- SpaceX's Starship Architecture
- Lunar propellant sent to LEO is not cost-effective
 - ΔV from LLO to MTO = ~ 1.3 km/s
 - ΔV from Lunar Surface to MTO = ~ 3.03 km/s
 - ΔV from LEO to MTO = ~3.6 km/s
- Large volumes are problematic
 - More infrastructure needed for ISRU plant
 - Greater up-mass cost
 - Ferry propellant back and forth with Starship vessel
 - Higher frequency of launches
- ISRU infrastructure investment is the only net benefit

Research Problem

"What are the CONDITIONS to make LUNAR ISRU <u>VALUABLE</u> for a Mara forward future

for a Mars-forward future?"

Top-Level System Elements

ISRU: Water-Ice \rightarrow Oxidizer & Fuel (in a commercial venture)

Major System Elements:

- Excavation
- Transportation
- Processing
- Storage
- Power Generation

***Excavation and Transportation* systems are outside of the scope of work, and I do not include them in the energy requirements or trade space**

It is important for any commercial-space venture to understand the variable investments costs that must be made early-on, and their expected yield over time to characterize their cross-over point of business viability.

Commercial Viability

At the cross-over point, a business decision can be made to reinvest earnings to improve their overall system's functionality and capabilities. Otherwise, it provides a proof-of-concept and viability, and can be sold off.

Baseline Assumptions

Existence and ease of accessibility to boundless water-ice deposits at the lunar south pole

- Data from LCROSS & LRO have both acquired significant evidence
- NASA's Volatiles Investigating Polar Exploration Rover (VIPER) will investigate the south pole in Dec. 2022.

Market Demand:

- ULA's Advanced Cryogenic Evolved Stage (ACES)
 - Orbital Refueling Depot Architecture
- Masten's Xeus Lunar Lander

Autonomous Operations (with minimal, remote, human oversight)

• Nominal operations for entire mission duration

Commercial Architecture

ACES-Xeus based architecture

- LOX/LH₂ Fuel
- ACES: 68MT tank size
 - RL-10 Engine oxidizer-to-fuel ratio (5.88:1)
 - 9.88MT LH₂
 - 58.09MT LÓX
- Xeus: 25MT to EML-2 (ORD location)

Processing Plant

• Sublimation & Electrolysis

Cryogenic Storage

• LOX = 90K; $LH_2 = 20K$

Power Generation System

Extraction & Transportation Systems are assumed

• No impact to power generation system requirements or trade decision

Processing System

- 10MT of LH₂ (9.88MT tank size + Margin of Error)
- 58.09MT of LOX
- Annual refuel rates of 1x, 2x, and 5x

Cryogenic Storage (IRAS)

- Integrated Refrigeration and Storage | NASA KSC
- Brayton Helium Refrigerator
- Proven technology that can hold LH₂ for indefinite time periods w/out boil-off for ground-based purposes (GODU-LH₂ Project)

Evaluation Metrics & Design Criteria

Energy (Power Generation System Trade)

- Output Rate (24-Hr Utility)
- Scalability (Density of kWh capabilities)

Risks

- Nominal Autonomous Operations
 - System level
 - Rendezvous
- Maintenance
 - Redundancy
 - Repairability
- Propellant Transfer Loss
 - ZBO technology and insulation integration

Analyses

ACES Tank Size = 68MT

• 10MT LH₂ & 58.09MT LOX Needed

Sublimation

• Specific heat change of $<110K \rightarrow 298K$ ($\Delta T = 188K$)

Electrolysis

- $2H_2O_{(I)}$ + Electrical Energy (285.6kJ) \rightarrow $2H_{2(g)}$ + $O_{2(g)}$
- Propellant ratio \neq Electrolysis ratio (LH₂ is the bottle neck)

89.93MT of Water-Ice must be processed (including margin of error)

- Surplus of 21.84MT LOX after each refuel cycle
- <u>89.93MT</u> < Mass of regolith that will be processed (Outside scope)

Brayton He Refrigerator power consumption = $7.69 \text{ kWh/kg}_{(LH2)}$

Data Visualization

Total Values:

- 1x/yr. = **126kWh**
- 2x/yr. = 230kWh
- 5x/yr. = 543kWh

It is important to note that these are **conservative figures**.

Nuclear fission reactors would be able to redirect their waste heat into the sublimation process, the most energy intensive step, and reduce the total ΔT required.

Power Generation Trade Factors

Nuclear Fission

Constant & reliable 24hr generation

- Ancillary benefits of waste heat generation to ease sublimation process
 - >80x more efficient power density (land use)
- Utility-Scale Power (KRUSTY)
 - Kilopower Reactor Using Stirling Technology
 - KiloPower project led to, a currently under-development, MegaPower project by Los Alamos Labs in conjunction with NASA

Solar (PVAs, Reflectors, Etc.)

- Limited 24hr generation ability
 - Power fluctuations likely
 - On-orbit infrastructure may be required
- Battery backup storage required
 - Additional up-mass
- Inefficient land use
 - Constraints on PVA locations will be set by inclination relative to the sun
 - Surface area that PVA field uses will not be accessible to mine or place other infrastructure

Data Visualization

60

Required Number of Reactors:

- 1x/yr. = **13**
- 2x/yr. = 23
- 5x/yr. = 55

of reactors are over-estimates

- The waste heat from these reactors has not been publicly shared; however, the Stirling engine necessitates the rejection of waste heat, so this is a <u>non-zero figure</u>.
- 2MW reactors may be available in the near future which would bring the reactor number down to one.

Space Policy Directive 1: Return humans to the Moon, and use bed for future Mars missions.

NASA has identified water to be one of the most valuable commodities off-Earth, since it has applications for both human consumption and rocket propellant. This project provides an overview of requirements on a commercial lunar ISRU plant, and a business strategy to become a viable industry, long-term.

it as a tes

- Design and development of the Excavation and Transportation Systems
 - Incorporate emergent technologies
 - Characterize their power needs
- Find other revenue sources
 - Detail how surplus of LOX will be used
 - Specify expected market demand (ACES, Artemis, Gateway, etc.)
- Develop master plan of all integrated elements
 - Point A to B, to C... etc.
 - Identify investment costs
 - Determine business case

This research is anticipated to influence students, entrepreneurs, mission planners, and policy makers, by showing viability of off-Earth manufacturing for future space commerce.

Thank you for listening!

Does anyone have any comments or questions?

Sylvester 'Sly' Hampton | <u>slyshampton@gmail.com</u> | (847) 970-2299

Back-Up Material

"How would propellant delivered from lunar ISRU compare to SpaceX's baseline Mars Mission Architecture, of Earth to LEO refueling, based on cost and risk?"

At <u>BEST</u>, LOX from the moon is \sim 21% MORE EXPENSIVE than LOX from Earth.

- Launch Cost : ~\$20M - 6 Launches to LEO for Moon Landing		- 150mt / Launch - Buy/Sell Price: \$0.8M/t (= FREE / @ Cost)	
1.)	20M (6) = 120M	5.)	714mt (\$0.8M) = 571.2M
2.)	$\frac{120M}{150mt} = \frac{\$0.8M}{t}$	6.)	571.2M + 120M = 691.2M
3.)	0.8(150mt) = 120M	7.)	$\frac{\$691.2M}{714mt} = \$0.97M \ /\text{mt}$
4.)	 (940 $t \times .6$) + 150 $mt = 714mt$	8.)	1.21 (\$0.8M) = \$0.97M

SpaceX's Baseline DRA

1x: Crewed launch – *150mt*5x: Tanker launch, rendezvous, & land

Trans-Mars Injection (TMI)

Gateway Depot

ConOps Overview

1x: Lunar ISRU Cargo launch – 70mt4x: Tanker launch, rendezvous, & land

Trans-Lunar Injection (TLI) ISRU on Moon for ~2 years (250mt of LOX/yr) 1x: Deliver LOX to Gateway in NRHO

1x: Crewed launch – *150mt*5x: Tanker launch, rendezvous, & land

LEO to NRHO Rendezvous/Refuel

Trans-Mars Injection (TMI)

LORD Architecture

1x: Lunar ISRU Cargo launch – 130mt
5x: Tanker launch, rendezvous, & land

Trans-Lunar Injection (TLI) ISRU on Moon for \sim 2 years (500mt of LOX/yr)

1x: Moon to LEO parking orbit1x: Crewed launch to LEO- 150mt

Rendezvous/Refuel

Trans-Mars Injection (TMI)

F.O.M.	Baseline	Gateway Depot	LORD
Quantity	∞ ~\$0.15/kg ●	250mt /yr.	500mt /yr.
Acquisition	+1 Day(s)	~2 Years	~2 Years
ure Development	Status Quo	Adds to Lunar Surface & Gateway Functionality	Critical Infrastructure that brings the Solar System closer to LEO
Risk (LOM or LOC)	Autonomous rendezvous 5x in LEO	~Baseline with added complexity	Higher probability of LOM than LOC
# of Launches	6	≥12	≥ 8
Launch Cost (\$M)	~ \$131.4	~ \$302.22	~ \$297.11
Total Score Lower is better	11	22	15
1 - Best	e 2 - Good	9 - Bad	4 - Worst 🛑