Gravity Simulation Platform On-Orbit: A Testbed Master's Project: Space Architecture, Fall 2019 Path

Conclusior

Opportunities

Albert Rajkumar

M.S. in Space Architecture Student, SICSA, Dept. of Mechanical Engineering, University of Houston.

Committee members: Prof. Larry Bell Prof. Olga Bannova Prof. Larry Toups Prof. Kriss Kennedy

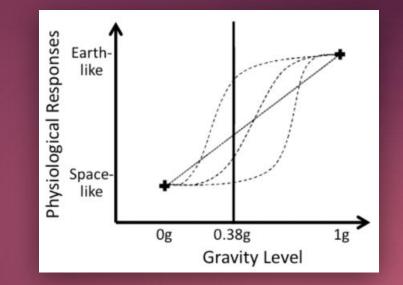
Prof. Larry Bell Prof. Olga Bannova Mr. Larry Toups Mr. Kriss Kennedy Spencer Stanford Victor Kitmanyen Vittorio Netti Rahul Venkataraman **Timothy Bishop** Justin Lin Les Johnson Justin Rowe Amandarose Kiger

Safety Long Term Human Presence In LEO, Mars & Beyond

Path

Vision

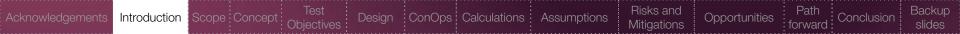
Issue: Knowledge Gap In Long Term Effects Of Partial Gravity


ConOps Calculations Assumptions

Risks and

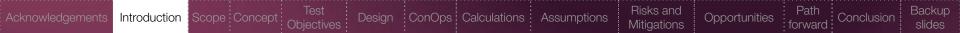
Path

Conclusion


Opportunities

Source: Artificial Gravity Evidence Report, Human Research Program, Human Health Countermeasures Element, Version 6, May 2015, Gilles Clément

Introduction


"The effects of Martian gravity on

the human sensorimotor, cardiovascular, musculoskeletal, and immune systems, as well as effects on behavior, general health and performance,

are unknown."

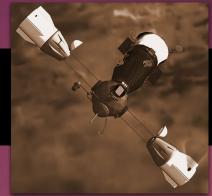
Source: International roadmap for artificial gravity research, November 2017, Gilles Clément

NASA TA 7.4.4

NASA HRP Human Health Countermeasures

Acknowledgements Introduction	Scope Concept Test Objectives	Design ConOps	Calculations Assumptions	Risks and Mitigations	Opportunities	Path forward Conclusion	Backup slides
-------------------------------	----------------------------------	---------------	--------------------------	--------------------------	---------------	----------------------------	------------------

Variable Gravity Research Platform In LEO


Acknowledgements	Introduction	Scope Concept	Test Objectives	Design	ConOps	Calculations	Assumptions	Risks and Mitigations	Opportunities	Path forward Cor	nclusion	Backup slides
------------------	--------------	---------------	--------------------	--------	--------	--------------	-------------	--------------------------	---------------	---------------------	----------	------------------

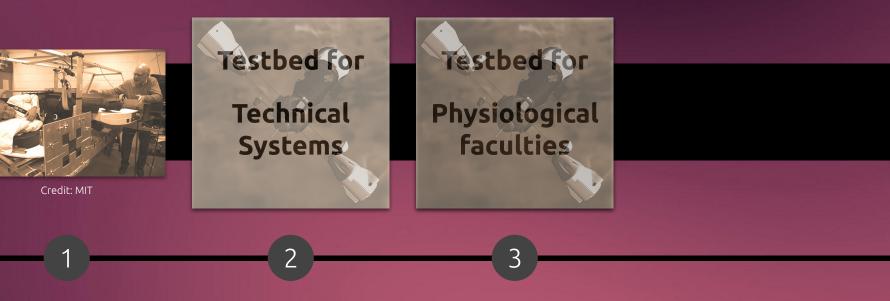
Acknowledgements	Introduction	Scope Concept	Test Objectives	esign ConOps	Calculations	Assumptions	Risks and Mitigations	Opportunities	Path forward	Backup slides
------------------	--------------	---------------	--------------------	--------------	--------------	-------------	--------------------------	---------------	-----------------	------------------

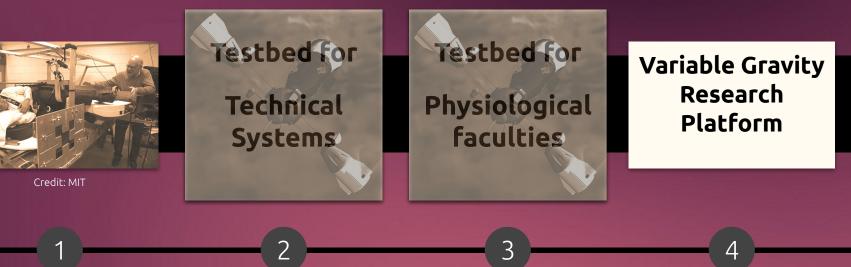
2

Acknowledgements	Introduction	Scope Concept Obj	Test jectives Design	ConOps	Calculations	Assumptions	Risks and Mitigations	Opportunities	Path forward	Conclusion	Backup slides
------------------	--------------	-------------------	-------------------------	--------	--------------	-------------	--------------------------	---------------	-----------------	------------	------------------

Testbed for Technical Systems

2


Acknowledgements Introduction	Scope Concept Test Objectives	Design ConOps Calculations	Assumptions Risks and Mitigations	Opportunities Path forward	Conclusion Backup slides
-------------------------------	----------------------------------	----------------------------	-----------------------------------	----------------------------	-----------------------------



Acknowledgements Introduction	Scope Concept Test Objectives	Design ConOps Calo	culations Assumptions	Risks and Mitigations	Opportunities Path forward	Conclusion E	Backup slides
-------------------------------	----------------------------------	--------------------	-----------------------	--------------------------	-------------------------------	--------------	------------------

Acknowledgements Intro	oduction	Scope Concept Test Objectives	Design Cor	Ops Calculations	Assumptions	Risks and Mitigations	Opportunities	Path forward	Backup slides
------------------------	----------	----------------------------------	------------	------------------	-------------	--------------------------	---------------	-----------------	------------------

Acknowledgements Introduction	Scope Concept Test Objectives	Design ConOps Calculations	Assumptions Risks and Mitigations	Opportunities Path forward Conclusion	Backup slides
-------------------------------	----------------------------------	----------------------------	-----------------------------------	--	------------------

Testbed

For Variable Gravity Research Platform In LEO

Thesis Proposal

Acknowledgements Introduction Scope Concept Test Objectives Design ConOps Calculations Assumptions Risks and Mitigations Opportunities Path forward Conclusion Backup slides

Scope of Project

Conops Constituent Elements Of Testbed Test Objectives

Risks and

Mitigations

Path

Opportunities

Conclusion

Time, Forces, Technical Systems

Modifications - Constituent Elements Of The Testbed

Rudimentary Design Of The Tether System

In scope

Scope Concep

nowledgements Introduction Scope Concep

Conops Constituent Elements Of Testbed Test Objectives

Risks and

Mitigations

Path

Opportunities

Conclusion

Time, Forces, Technical Systems

Modifications - Constituent Elements Of The Testbed

Rudimentary Design Of The Tether System

In scope

nowledgements Introduction Scope Concep

Conops Constituent Elements Of Testbed Test Objectives

Risks and

Mitigations

Path

Opportunities

Conclusion

Time, Forces, Technical Systems

Modifications - Constituent Elements Of The Testbed

Rudimentary Design Of The Tether System

In scope

nowledgements Introduction Scope Concep

Conops Constituent Elements Of Testbed Test Objectives

Risks and

Mitigations

Path

Opportunities

Conclusion

Time, Forces, Technical Systems

Modifications - Constituent Elements Of The Testbed

Rudimentary Design Of The Tether System

In scope

Acknowledgements	Introduction	Scope	Concept Test Objectives	Design	ConOps	Calculations	Assumptions	Risks and Mitigations	Opportunities	Path forward	d Conclusion	Backup slides
				Dec) F Subc	in the mode					
				Desi	gn O	י איז איז	systems					
				Tos	t Act	ivities [Dotails					
				Test		VICICS	Jetaits					
			Inte	гіог	Desig	gn Of T	he Test	bed				
				$\overline{\mathbf{C}}$	L /	afaa						

Out of scope

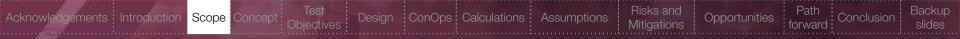
Out of scope

Acknowledgements	Introduction	Scope	Concept	t Objectives	Design	ConOps	Calculations	Assumptions	Risks and Mitigations	Opportunities	Path forward	Conclusion	Backup slides
					Desi	gn C	f Subs	systems					
					Test	t Act	ivities I	Details					
				Inte	гіог Г	Desiç	jn Of T	he Test	bed		I		

Out of scope

Scono	Concont	Test	Docian	ConOne	Calculations	Accumptions	Risks and	Opportunities	Path	Conclusion	Backup
Scope	Concept :	Objectives	Design	Conops	Calculations	Assumptions	Mitigations	Opporturities	forward	CONCIUSION	slides

Project Statement



Low Cost Enabling Mission - Off The Shelf Products

Short Term Human Adaptations To Rotating Platforms

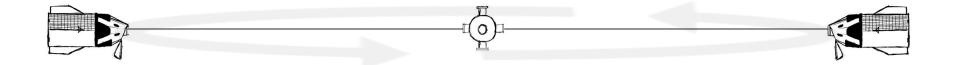
Low Cost Enabling Mission - Off The Shelf Products

Short Term Human Adaptations To Rotating Platforms

Acknowledgements Introduction Scope Concept

Objectives

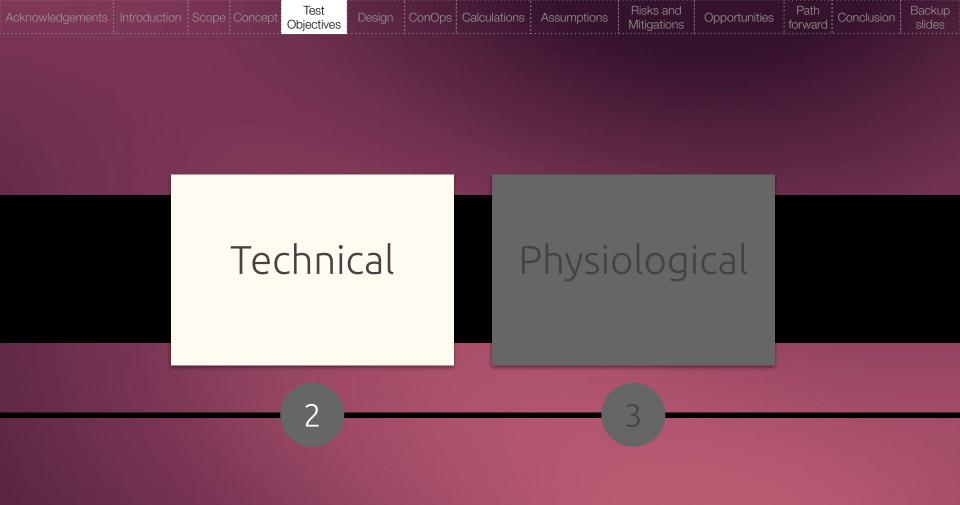
Preliminary Design Concept



Path forward

2 Space Vehicles Tethered To Pressurized Central Hub

The Central Hub Docks To ISS Intermittently



Acknowledgements Introduction Scope Concept Concept Design Design ConOps Calculations Assumptions Risks and Mitigations Opportunities Path forward Conclusion Backup slides

Test Objectives

Acknowledgements Introduction Scope Concept Concept Concept Design Design ConOps Calculations Assumptions Risks and Mitigations Opportunities Path forward Conclusion Backup slides

Test subsystems

- ECLSS
- Thermal control
- GNC
- Power supply & distribution
- Propulsion & AAC

Test docking and transfer systems & protocols

Test spin-up and spin down systems & protocols

Acknowledgements Introduction Scope Concept Concept Design Design ConOps Calculations Assumptions Risks and Opportunities Path forward Conclusion Backup slides

Test subsystems

- ECLSS
- Thermal control
- GNC
- Power supply & distribution
- Propulsion & AAC

Test docking and transfer systems & protocols Test spin-up and spin down systems & protocols

Acknowledgements Introduction Scope Concept Concept Design Design ConOps Calculations Assumptions Risks and Deportunities Path forward Conclusion Backup slides

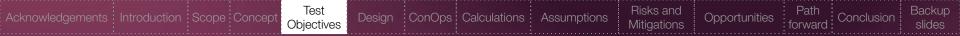
Test subsystems

- ECLSS
- Thermal control
- GNC
- Power supply & distribution
- Propulsion & AAC

Test docking and transfer systems & protocols

Test spin-up & spin down systems & protocols

Acknowledgements Introduction Scope Concept Concept Design Design ConOps Calculations Assumptions Risks and Opportunities Path forward Conclusion Backup slides


Test subsystems

- ECLSS
- Thermal control
- GNC
- Power supply & distribution
- Propulsion & AAC

Test docking and transfer systems & protocols

Test spin-up and spin down systems & protocols

Technical

Physiological

3

Test Objectives

Centripetal Acceleration

RPM

Test

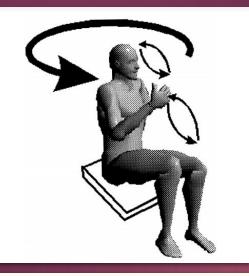
Objectives

Radius

Path

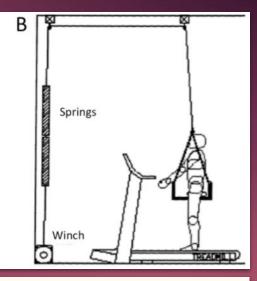
forward

RPM


Test Objectives

Radius

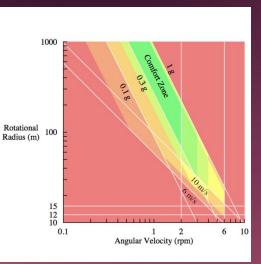
Source: Adaptation in a rotating artificial gravity environment, James R. Lackner, Paul DiZio, 1998


Test Response To Coriolis And Related Effects.

Test Response To Different Levels Of Gravity. Test Response To Different Rates Of Angular Velocity And Radii.

cknowledgements Introduction Scope Concept Test Objectives Design ConOps Calculations Assumptions Risks and Mitigations Opportunities Path forward Conclusion slide

Source: Artificial Gravity Evidence Report, Human Research Program, Human Health Countermeasures Element, Version 6, Gilles Clément, 2015

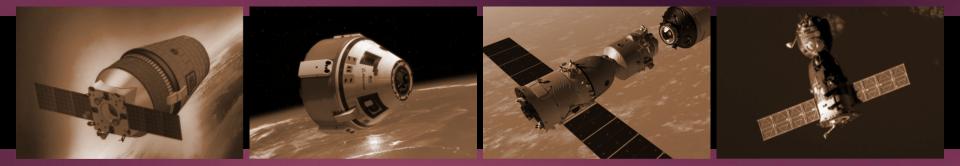


Test Response To Coriolis And Related Effects. Test Response To Different Levels Of Gravity. Test Response To Different Rates Of Angular Velocity And Radii.

Source: Space Settlement Population Rotation Tolerance, Al Globus, Theodore Hall, 2017

Test Response To Coriolis And Related Effects.


Test Response To Different Levels Of Gravity. Test Response To Different Rates Of Angular Velocity And Radii.



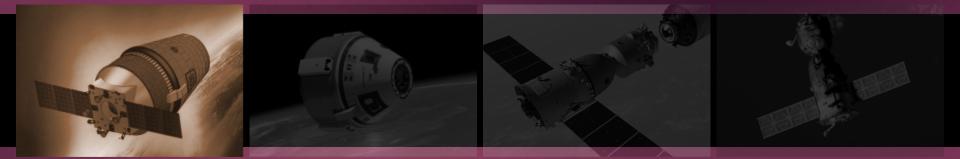
dgements Introduction Scope Concept Test Objectives Design ConOps Calculations Assumptions Risks and Mitigations Opportunities Path forward Conclusion Backup slides

Space Vehicle Selection

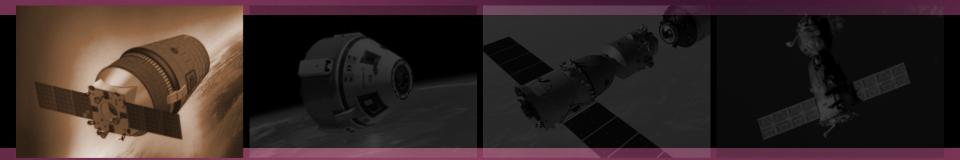


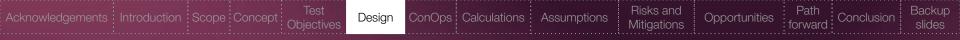


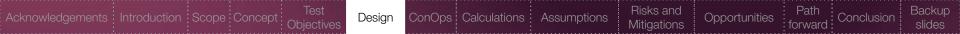




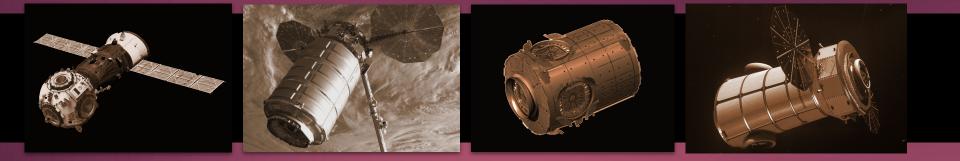




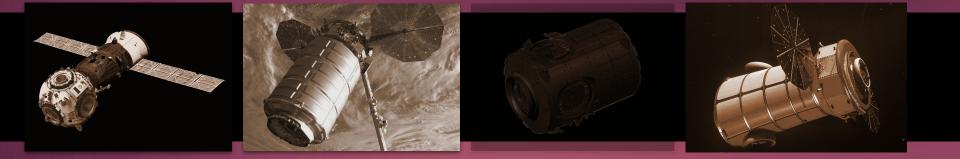




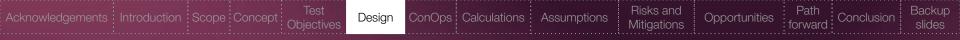


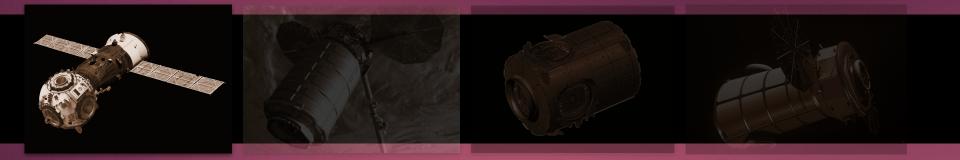


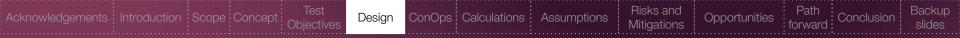

Central Hub Selection



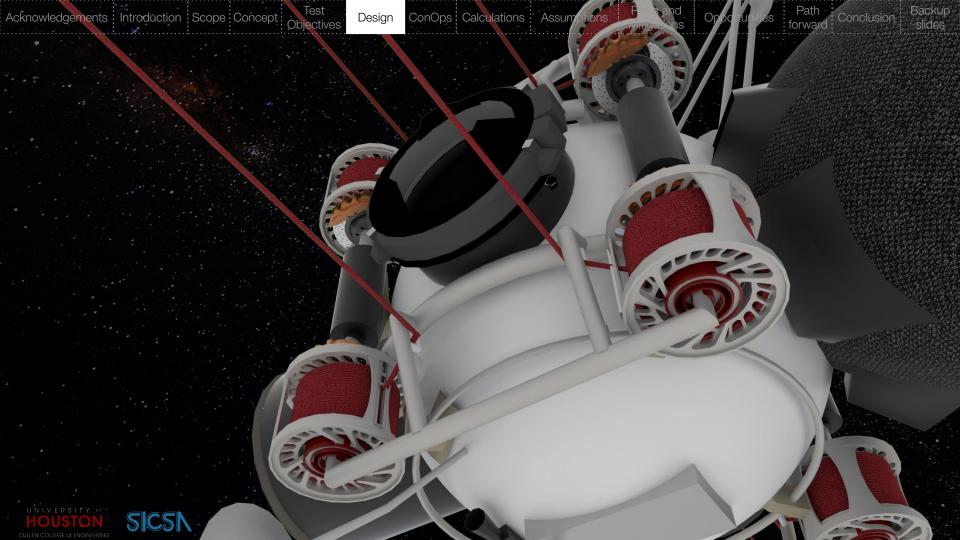


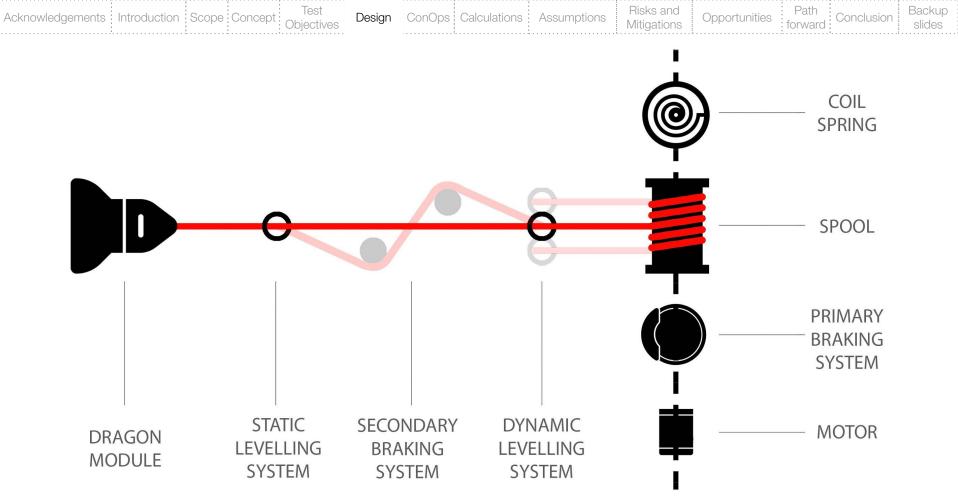




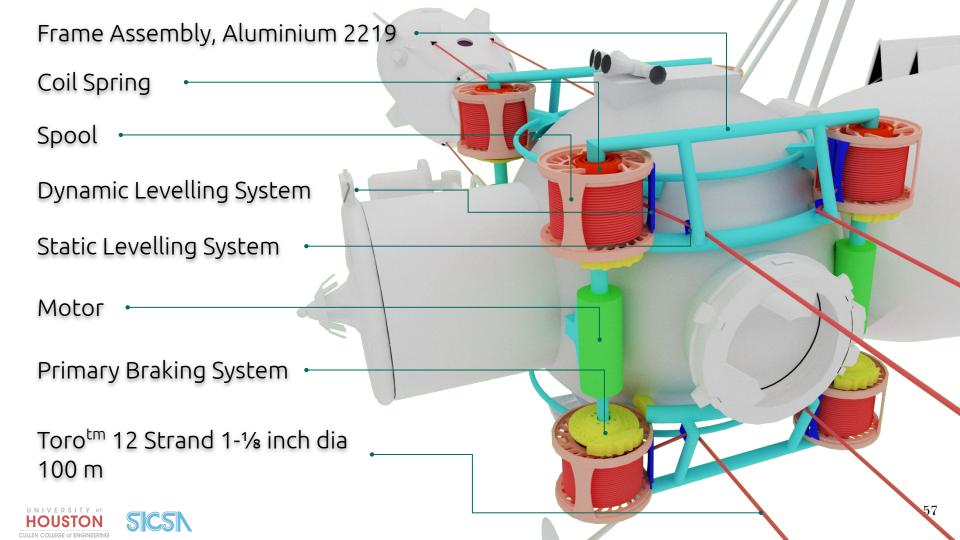


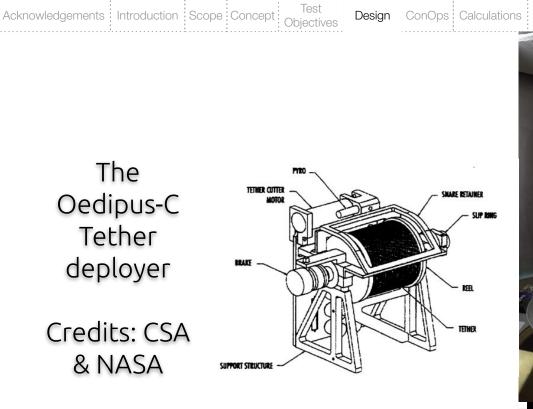
Prichal + Progress





vledgements Introduction Scope Concept Test Objectives Design ConOps Calculations Assumptions Risks and Mitigations Opportunities Path forward Conclusion Backup slides


Customization of Central Hub



Toro™ 12 Strand

1-1⁄8" Diameter 10 Factor Of Safety 100" max. Tether Length

Risks and

Mitigations

Assumptions

Space Tether Automatic Retrieval (STAR)

Path

forward

Conclusion

Opportunities

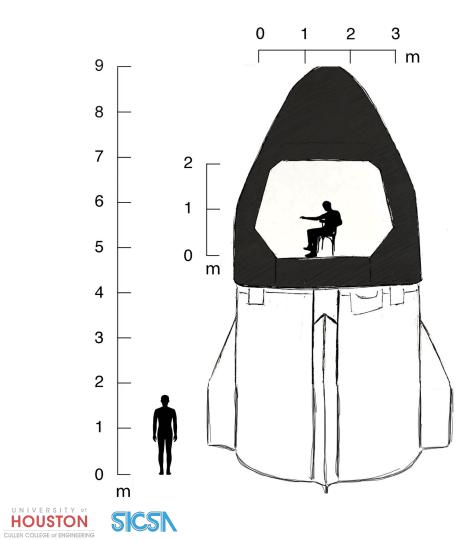
Credits: DLR & ESA

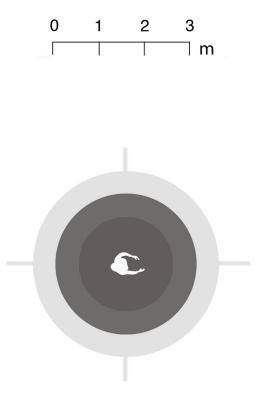
Backup

slides

owledgements Introduction Scope Concept Test Objectives Design ConOps Calculations Assumptions Risks and Mitigations Opportunities Path forward Conclusion Backup slides

Customization of Dragon Modules





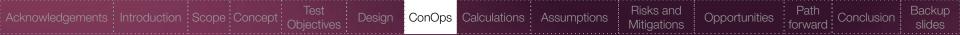

Design

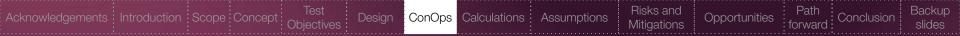
ConOps Calculations Assumptions

No Superdraco Thrusters

ConOps Calculations Assumptions

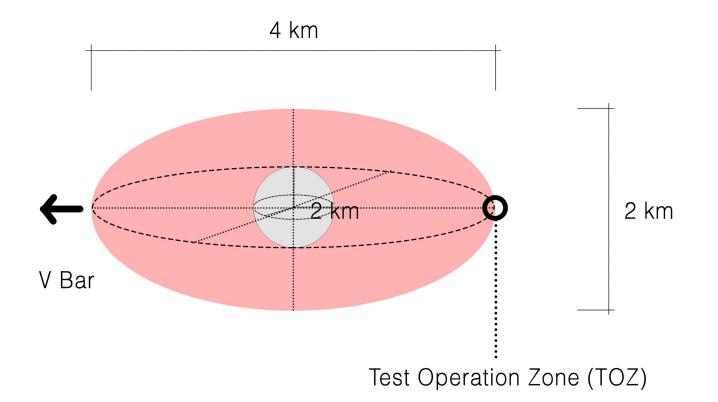
Design


Objectives


Path

Conclusion

ConOps

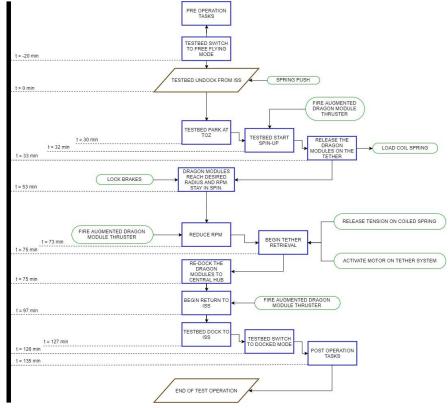


Testbed System	Docked mode	Free flying mode
Solar Arrays	Extended	Retracted
Electrical power supply	Charging batteries	On
ECLSS	Off	On
Comms	Off	On
GNC	Off	On

TEST NAME **T**1 SPIN RADIUS 10 M ^{RPM} 9.5 G spin duration 20 mins

Calculations

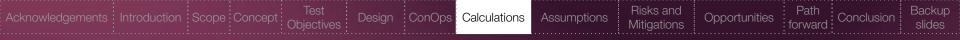
Path

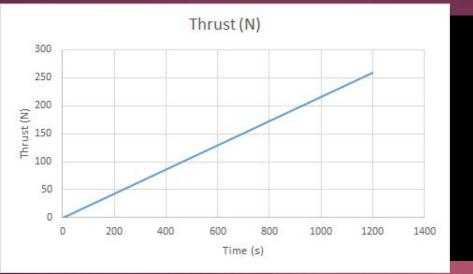

forward

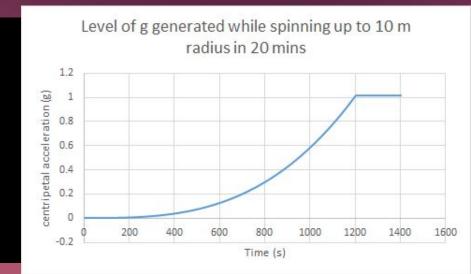
Conclusion

Opportunities

Risks and


ConOps Calculations

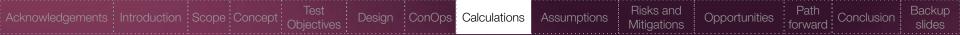

Path


forward

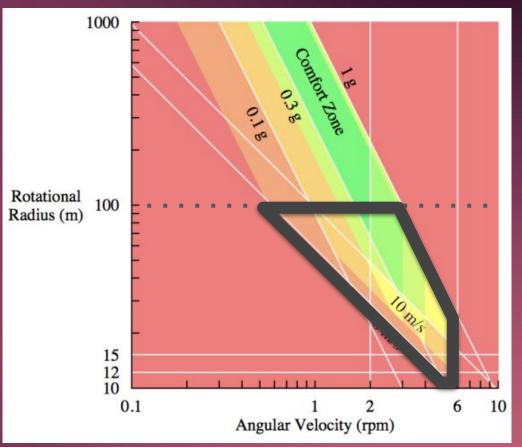
Opportunities



Calculations


Design

: ConOps



Path

Conclusion

Adapted from: Space Settlement Population Rotation Tolerance, Al Globus, Theodore Hall, 2017

31 M-tons Estimated Wet Mass Of Testbed

Calculations

Risks and

Path

Conclusion

Opportunities

forward 40m Spin up parameters to 1 g 1200 1023 1000 20m W 723 800 10m Thrust (N) 516 510 10 min spinup 600 360 20 min spinup 344 400 10m 260 60 min spinup 172 200 A 86 20m 0 0 10 20 30 40 50 Radius (m) 40m

Design ConOps Calculations

Risks and

Path

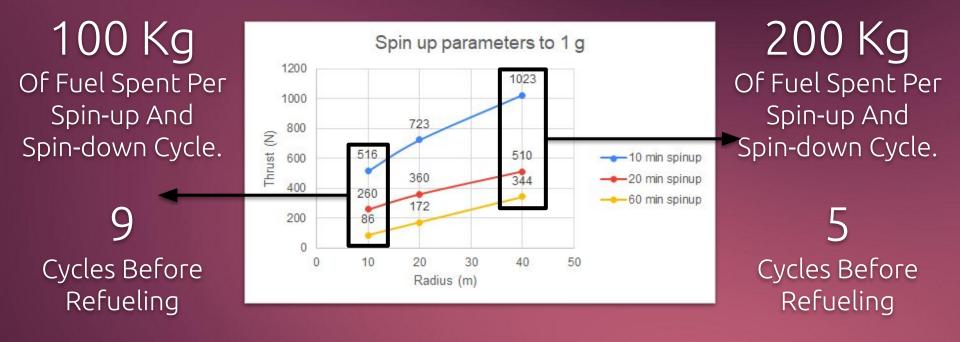
KDTU-80 Thruster Of Progress And Same Sized Fuel Tank

Calculations

Design

Obiectives

: ConOps

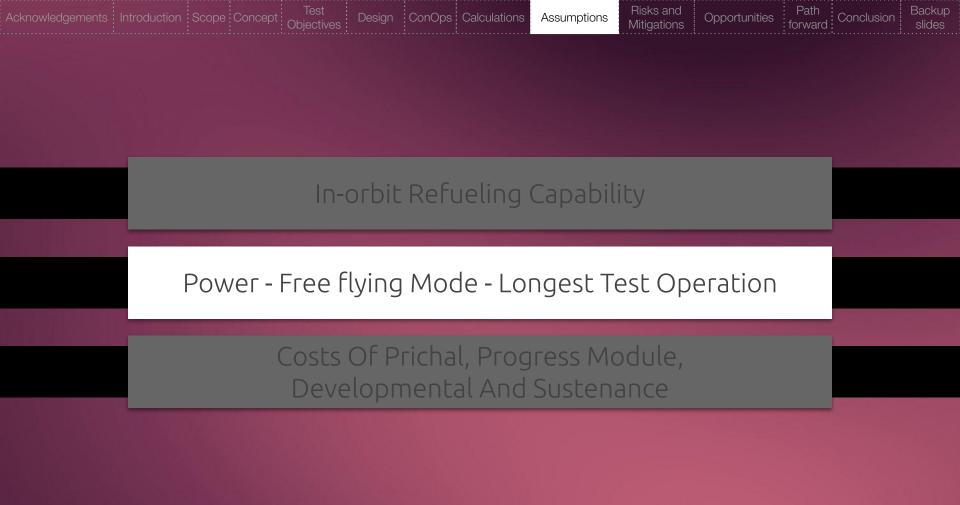

Risks and

Mitigations

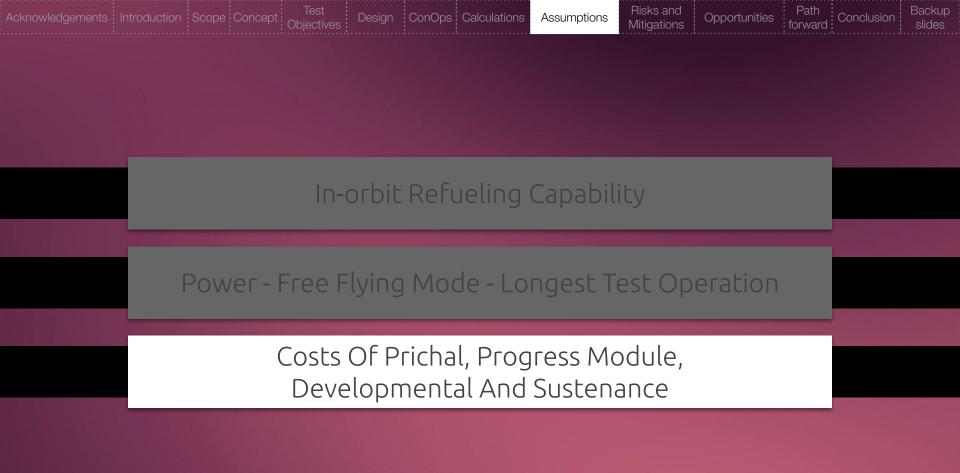
Path

Opportunities

Conclusion


Acknowledgements Introduction	Scope Concept Test Objectives	Design ConOps	Calculations	Assumptions	Risks and Mitigations	Opportunities Path forward Conclusion	Backup slides

Assumptions



Acknowledgements Introduction Scope Concept Test Objectives Design ConOps Calculations Assumptions	Risks and Mitigations	Opportunities Path forward Conclusion Backup slides
---	--------------------------	---

Risks & Mitigations

Objectives Design Concept Conc	Conclusion Backu	Opportunities Path	Risks and	Assumptions	Calculations	ConOns	Design	Test	Concent	Scone	Introduction	Acknowledgements
	d slides	forward	Mitigations	73301110113		001003	Design	Objectives	Concept	Ocope		Acknowledgements

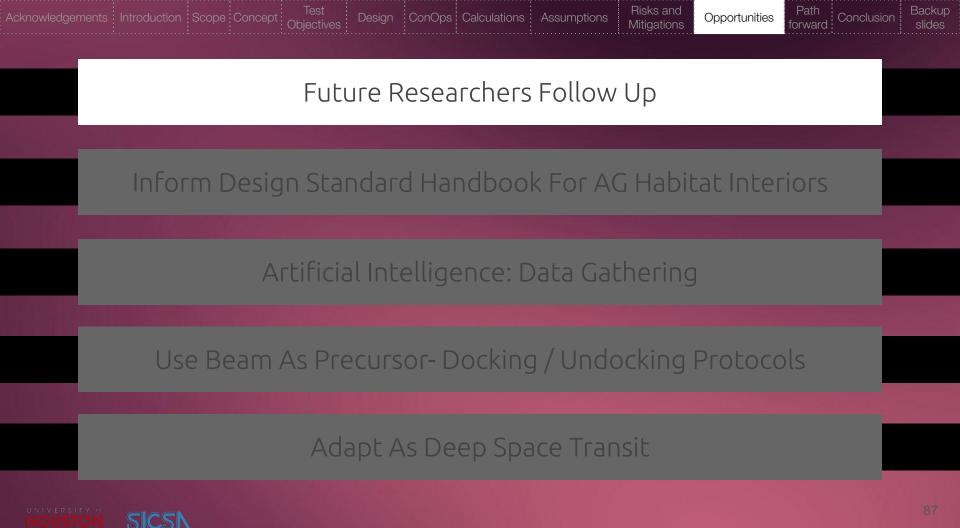
Acknowledgements Introduction	- Scope Concept	Test Design	ConOps	Calculations	Assumptions	Risks and	Opportunities Path	Conclusion Backup
	Obj	jectives ;	- concept			Mitigations	forward	slides

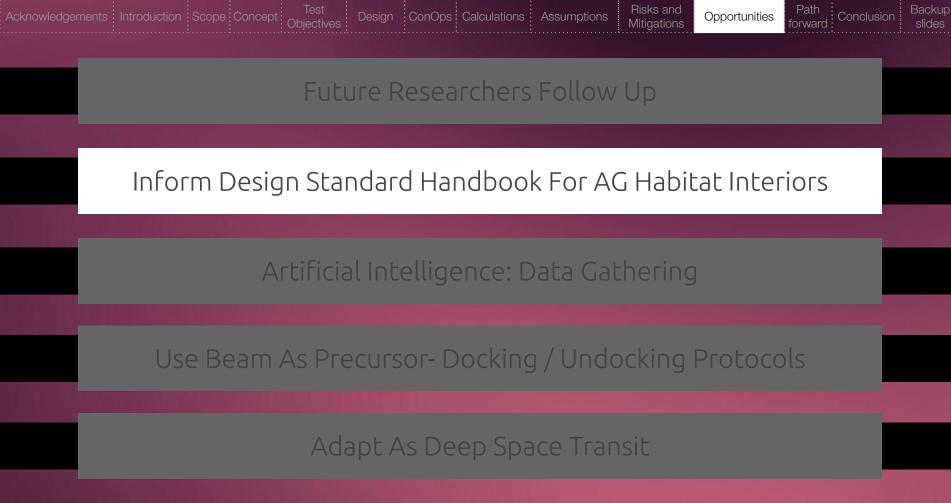
Static Discharge	Conductive tether
Center of Gravity Offset	→ Variation In Tether Length
Hypergolic Fuels	Safer Fuel Mixtures / Thrusters.
Zvezda Docking Port Utilization	Alternate & Dedicated Docking Spot

	Soona Concent	Test	ConOne	Calculations	Accumptions	Risks and	Opportunition Path Conclusion	Backup
Acknowledgements	Olicept	bjectives : Design	Conops	Calculations	Assumptions	Mitigations	iforward i	slides
						0		

Static Discharge	Conductive tether
Center of Gravity Offset	Variation In Tether Length
Hypergolic Fuels	Safer Fuel Mixtures / Thrusters.
Zvezda Docking Port Utilization	Alternate & Dedicated Docking Spot

Acknowledgemente	Introduction	Saana	Concont	Test	Docian	ConOno	Colculationa	Accumptions	Risks and	Opportunition Path	Conclusion	Backup
Acknowledgements	Introduction	Scope	Concept	Objectives	Design	Conops	Calculations :	Assumptions	Mitigations	opportunities : forward :	CONClusion	slides
									Jana			

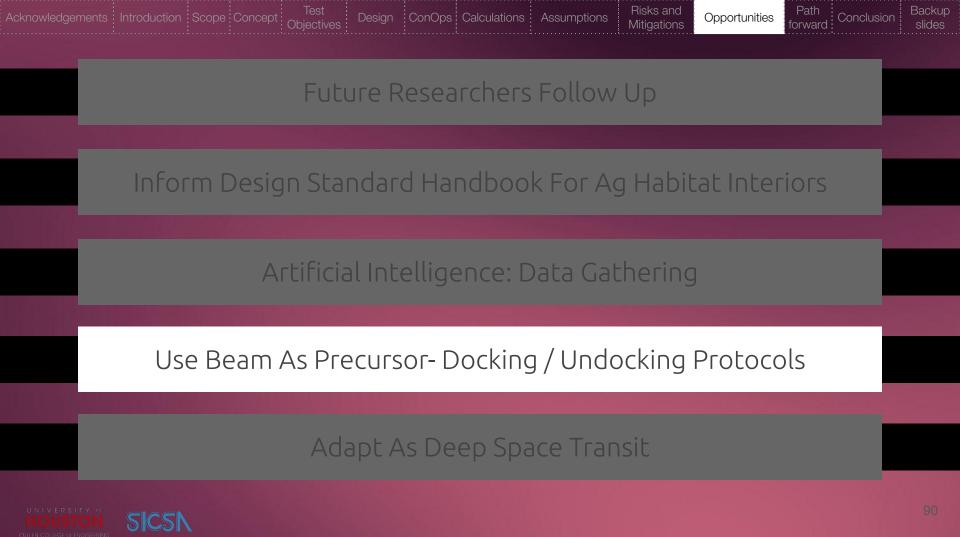

Static Discharge	
Center of Gravity Offset	Variation In Tether Length
Hypergolic Fuels	Safer Fuel Mixtures / Thrusters.
Zvezda Docking Port Utilization	Alternate & Dedicated Docking Spot

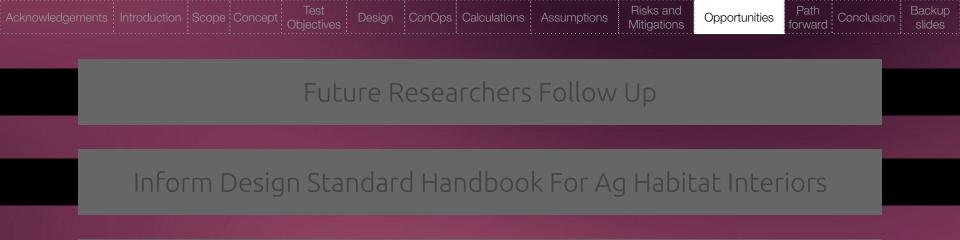


Acknowledgements Introduction Scope Concept Concept Design ConOps Calculations Assumptions	Risks and Mitigations	Opportunities	Path forward	Backup slides
--	--------------------------	---------------	-----------------	------------------

Opportunities

Future Researchers Follow Up


Inform Design Standard Handbook For Ag Habitat Interiors


Artificial Intelligence: Data Gathering

Use Beam As Precursor- Docking / Undocking Protocols

Adapt As Deep Space Transit

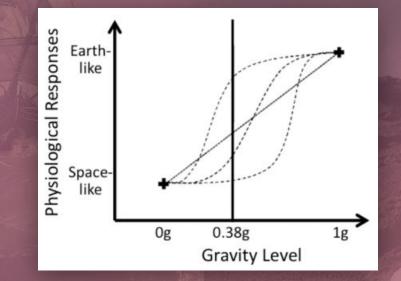
Artificial Intelligence: Data Gathering

Use Beam As Precursor- Docking / Undocking Protocols

Adapt As Deep Space Transit

Acknowledgements Introduction Scope Concept Test	Risks and	es Path	Conclusion Backup slides
Objectives Design ConOps Calculations Assumptions	Mitigations Opportunit	forward	

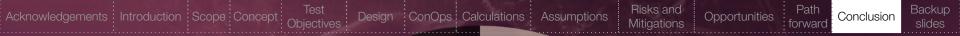
Path Forward



Conclusion

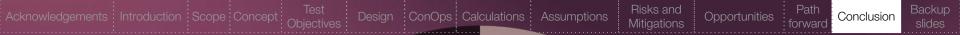
Issue: Knowledge Gap In Long Term Effects Of Partial Gravity

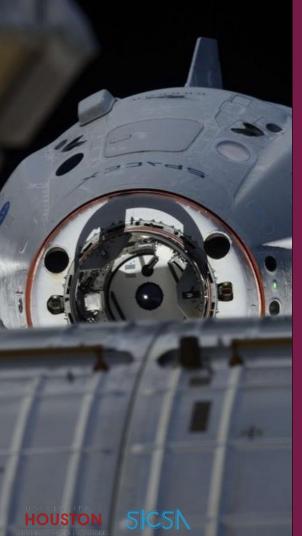
Conclusion



Source: Artificial Gravity Evidence Report, Human Research Program, Human Health Countermeasures Element, Version 6, May 2015, Gilles Clément

Estimated Cost : Hardware + Launch + Development + Sustenance





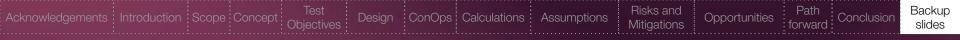
What bridges need to be built from current state to future state?

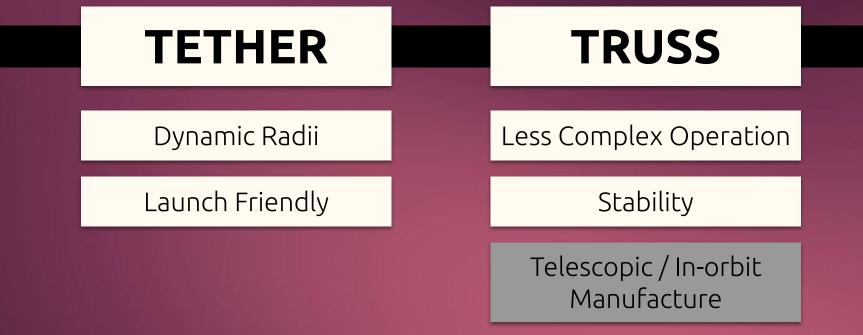
Image credits: NASA and SpaceX

Gravity Simulation Platform On-Orbit: A Testbed Master's Project: Space Architecture, Fall 2019

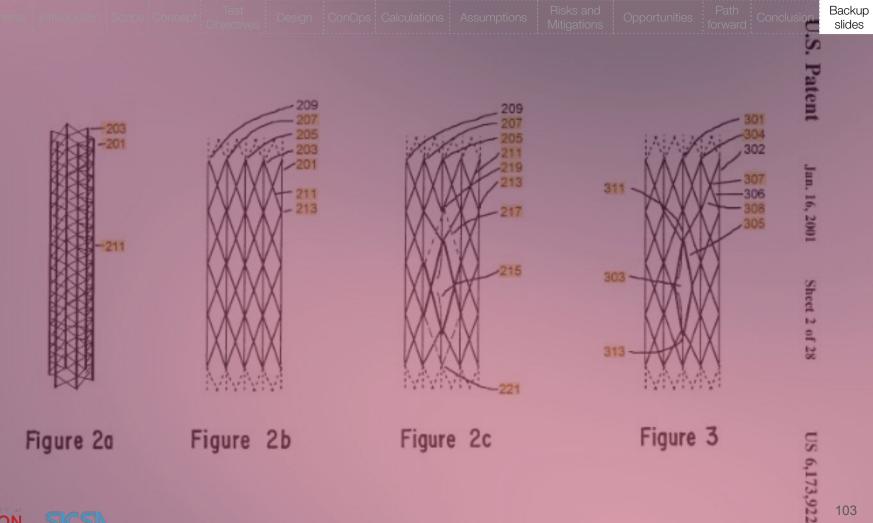
ConOps Calculations

Albert Rajkumar M.S. in Space Architecture Student, SICSA, Dept. of Mechanical Engineering, University of Houston.

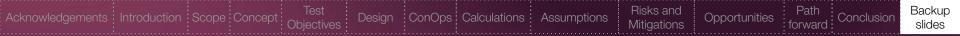

Committee members: Prof. Larry Bell Prof. Olga Bannova Prof. Larry Toups Prof. Kriss Kennedy



Path


Conclusion

Opportunities



HOUSTON

ID		Element	Cost (million)	Quantity	Total cost (million)	Mass (kg)
1	Crew Dr	agon	\$310	2	\$620	24000
2	Prichal (UM) module	\$200*	1	\$200*	4000
3	Progress	s MS	\$300*	1	\$300*	3290
4		Soyuz 2-1b (UM + Progress)	\$80	1	\$80	-
5	Launch	Falcon 9	\$62	2	\$124	-
6	Develop Analys	ment sis, Integration, and testing	\$100*	-	\$100*	-
7	Sustaini	ng operations	\$100*	-	\$100*	-
	Grand To Uston Site Site	otal CSN			\$1524	31290 104

Spin up calculations for static radius @ 10 m

Assumptions:

- The dragons are already at 10 m radius before start of spin-up. Radius of spin, r = 10 m •
- Centripetal acceleration to be generated= 1g
- Therefore, Tangential velocity to be generated, $a_{r} = m/s$ \bullet
- Time taken to spin up to enTend state, dt= 1200 sec (20 mins) \bullet
- \bullet
- Mass of Dragon 1, m_{d2} = Mass of Dragon 2, m_{d1} = m_d = 12,000 kg Central hub is a solid sphere of mass, m_{ch} = 7290 kg and radius, r_{ch} = 2.5 m \bullet
- Thrust provided by augmented thruster, $F_1 = F_1 = F_2$ \bullet

```
Moment of Inertia of system, I_{total} = \frac{2}{s} m_{ch} r_{ch}^{2} + 2m_{d} r_{d}^{2} (MI_{sphere} + MI_{two body system})
= 18,225 + 2,400,000
                                                            = 2.418.225 \text{ kgm}^2
```

```
Tangential acceleration, a_{\mu} = r \alpha
Angular acceleration, \alpha = \tilde{a}_{L} / r
                                       = (dv_{\downarrow}/dt) / r = (10 \text{ m/s} / 1200 \text{ s}) / 10 \text{ m} = 1/1200 \text{ rad/s}^2
```

```
Torque = I<sub>total</sub> x a
           = 2015 \text{ kgm}^2/\text{s}^2
Also, Torque = r_1F_1 + r_2F_2 = 2rF_1
Therefore, thrust required by engine, F<sub>a</sub> = Torque / 2r
                                      = 2015 / 20
                                      = 100 \text{ kgm/s}^2
```


Spin up calculations for pre-deployed radius to 10 m in 20 mins.

Augmenting the KDTU-80 thruster for the Progress MS as an example, as the spin thrusters on the crew dragons,

For the KDTU-80 on a Progress MS, Maximum mass of fuel spent, dm = (F x dt) / I_{sp} x g₀ = (2950 x 890) / 302 x 9.81 = 886 kg

For the KDTU-80 when augmented on the crew dragons, to perform the procedure described on the previous page, Mass of fuel spent, dm_a = (F x dt) / I_{sp} x g₀ = (100 x 1200) / 302 x 9.81 = 40 kg

Therefore, If we spend 40 kg of fuel during spin-up and another 40 kg for spin-down, and if we keep the same sized tanks and same specs,

No. of test operations possible before refueling = 886 / (40 x 2) = 11

Spin up calculations for r = 40 m, spin up time = 10 mins

Augmenting the KDTU-80 thruster for the Progress MS as an example, as the spin thrusters on the crew dragons,

For the KDTU-80 on a Progress MS, Maximum mass of fuel spent, dm = (F x dt) / I_{sp} x g₀ = (2950 x 890) / 302 x 9.81 = 886 kg

For the KDTU-80 when augmented on the crew dragons, to perform the procedure described on the previous page, Mass of fuel spent, dm_a = (F x dt) / I_{sp} x g₀ = (500 x 600) / 302 x 9.81 = ~100 kg

Therefore, If we spend 100 kg of fuel during spin-up and another 100 kg for spin-down, and if we keep the same sized tanks and same specs,

No. of test operations possible before refueling = $886 / (100 \times 2)$ = ~ 5

Spin up calculations for r = 10 m, spin up time = 60 mins

Augmenting the KDTU-80 thruster for the Progress MS as an example, as the spin thrusters on the crew dragons,

For the KDTU-80 on a Progress MS, Maximum mass of fuel spent, dm = (F x dt) / I_{sp} x g₀ = (2950 x 890) / 302 x 9.81 = 886 kg

For the KDTU-80 when augmented on the crew dragons, to perform the procedure described on the previous page, Mass of fuel spent, dm_a = (F x dt) / I_{sp} x g₀ = (43 x 3600) / 302 x 9.81 = ~50 kg

Therefore, If we spend 50 kg of fuel during spin-up and another 50 kg for spin-down, and if we keep the same sized tanks and same specs,

No. of test operations possible before refueling = $886 / (50 \times 2)$ = ~9

Source: Adaptation in a rotating artificial gravity environment, James R. Lackner, Paul DiZio, 1998

Fig. 1. Illustration of the scalloping motion experienced during voluntary pitch head movements and flexion-extension forearm movements made during holy volution. When subjects are totaling counterclocitwic (heavy arrow) and pitch the head forward or extend the forearm they experience anghward deviation (thin arrows) from the intended path (dotted lines) and the reverse when they raise the head or arm up. The scalloping motion is in the direction of the Coriols fore generated. It is esaggeringd when the gravionential force level increases and is almost abolished in microarwity, both for the arm and head.

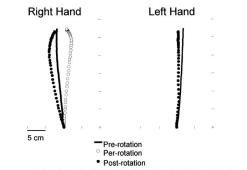


Fig. 3. Reaching movements made (averaged across eight subjects) in a study of internamal transfer of adaptation to Coriolis forces in the rotating (counterclockvins) noors. Same view, scale and sampling as in Fig. 2A. Dassilient were enablished for both hands pre-contains. 80 eaches were made per-oration with the right hand to adapt it fully (not shown) to counterclockwise rotation. The initial post-oration movements with the Hand were straight to a divised endpoint. These movements intraroef the endpoint error traphy diminished. When subjects first reached with the right hand after eight post-oration movements of the Hand, there movements that and a great particular post-orational per-oration reaches with the right hand after eight post-oration movements of the Hand, there movements endpoint error traphy diminished. When subjects first reached with the right hand after eight post-oration movements of the Hand, there are movements real to the strap error and the per-oration reaches with

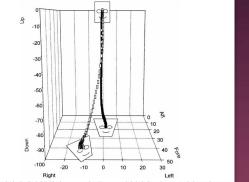


Fig. 5. Three-dimensional paths of typical pitch head movements made at 10 pm counterclockvice in the notating room. A point between the eyes was tracked at 100 Hr. The view is looking waved and digitally wave on the subject, and the coundine system is forder durine to the subject, such the coundine system is forder durine to the subject. The the coundine system is forder durine to the subject, and the coundine system is forder durine to the subject, and the coundine system is forder durine to the subject. The solid resting the such exact the subject and the coundine system is forder durine to the subject and the coundine system is forder durine to the subject and the coundine system is forder and is initially division if the located durine and no rotation is nyw or 10 Here-rotation the table is initially division if the kind dues and application. The estation wavements (not shown) but the nil division of the kind dues and path sequidity. 5 cm Pre-rotation • Per-rotation, Initial • Per-rotation, Initial

ig. 4. Pointing movements of the leg (averaged across eight subjects) to recently extinguished visual target on the floor of the rotating recomame view, scale and sampling as Fig. 2A. Subjects stood and used their ight leg, their head and waist were stabilized. Movement endpoints were stability deviated in the direction of the rightward Corolis forces generted per-rotation (counterclockwise) and were deviated in mirror-image abino post-rotation.

Test Response To Coriolis And Related Effects.

Test Response To Different Levels Of Gravity.

Acknowledgements Introduction Scope Concept Test Objectives Design ConOps Calculations Assumptions Risks and Mitigations Opportunities Path forward Conclusion Backup slides

Source: Artificial Gravity Evidence Report, Human Research Program, Human Health Countermeasures Element, Version 6, Gilles Clément, 2015

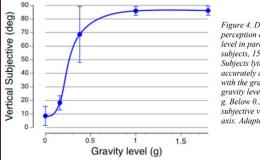


Figure 4. Dose-response curve of perception of verticality versus gravity level in parabolic flight. Mean of 6 subjects, 15-60 trials per subjects. Subjects lying on their side were able to accurately align their subjective vertical with the gravitational vertical for gravity levels ranging from 0.3 g to 1.8 g. Below 0.3 g they aligned their subjective vertical with their long body axis. Adapted from Winkel et al. (2012).

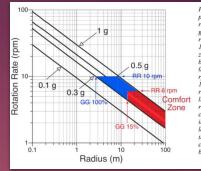


Figure 7. The rotation rate is plotted as a function of the radius of rotation for four gravity levels. Slow rotation rooms studies performed in the 1960s referred to the "comfort zone" as the red area delimited by gravity levels ranging from 0.3 g to 1 g, rotation rate < 6 rpm, and gravity gradient GG -15% (radius > 12 m). However, recent data indicate that these limits are overly conservative: rotation rates of up to 10 rpm can be tolerated with incremental exposures, and large gravity gradient during intermittent short-radius centrifugation does not seem to be a critical factor (blue area).

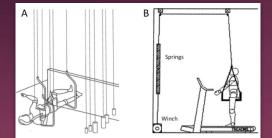
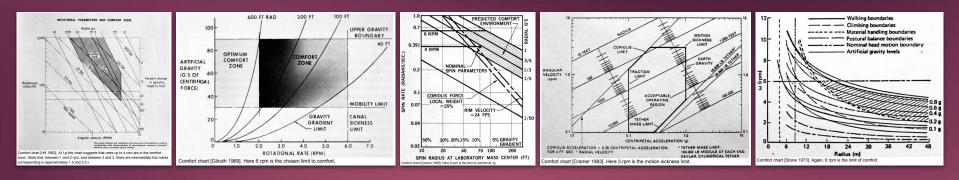
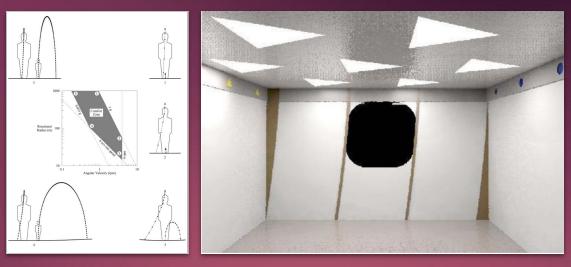


Figure 9. A. Body incline suspension system. The cables are attached to a crane located 10-20 m above the subject lying on his/her side. B. Body suspension system of an upright subject with cables, springs, and a bicycle harness. Adapted from Wu (1999).


Test Response To Coriolis And Related Effects.

Test Response To Different Levels Of Gravity.


Source: Space Settlement Population Rotation Tolerance, Al Globus, Theodore Hall, 2017

Test Response To Coriolis And Related Effects.

Test Response To Different Levels Of Gravity.

Source: Artificial Gravity And The Architecture Of Orbital Habitats, Theodore W. Hall, 1999

Test Response To Coriolis And Related Effects. Test Response To Different Levels Of Gravity.

ID	Test Objectives	Task	Duration (mins)	RPM	Radius
TO	 In a free flying but non-spinning condition, Confirm the following systems work ECLSS GNC Power systems Propulsion and AAC 	Undock Move to TOZ Park Move to ISS Dock	- TBD 20 (?) TBD -		
U N I V E HOU CULLEN COLLEG	R S LT Y of STON Fe of ENGINEERING				SICSN

ID	Test Objectives	Task	Duration (mins)	RPM	Radius
	In a free flying and spinning	Undock	-		
	condition. Confirm the following systems work	Move to TOZ	TBD		
T1	 ECLSS GNC 	Spin Up	TBD		
	 Power systems Propulsion and AAC 	Perform tests	20	TBD	TBD
	 Spin up and spin down system 	Spin down	TBD		
	 Tethering system 	Move to ISS	TBD		
		Dock	-		
HOU	R S I T Y er STON				SICSN

CULLEN COLLEGE OF ENGINEERING

ID	Test Objectives	Task	Duration (mins)	RPM	Radius
T2 T3 T4 	 In a free flying and spinning condition. Iterate and improve the following systems ECLSS GNC Power systems Propulsion and AAC Spin up and spin down system Tethering system 	Undock Move to TOZ Spin Up Perform tests Spin down Move to ISS Dock	TBD TBD Varied TBD TBD	Varied	Varied
unive HOU	RSTTY OF				SICSN


CULLEN COLLEGE of ENGINEERING

D	Test Objectives	Task	Duration (mins)	RPM	Radius
		Undock	-		
	Perform short term tests. In the framework of papers listed:	Move to TOZ	TBD		
P1	 Jump and drop tests In-place motion tests 	Spin Up	TBD		
	 Lateral movements tests prograde 	Perform tests	20	TBD	TBD
	 retrograde parallel to spin axis 	Spin down	TBD		
		Move to ISS	TBD		
	R S I T Y of	Dock	-		
HOU	STUN				

CULLEN COLLEGE of ENGINEERING

D	Test Objectives	Task	Duration (mins)	RPM	Radius
P2 P3 P4 	 Perform short term tests. In the framework of papers listed: Jump and drop tests In Place motion tests Lateral movements tests Prograde Retrograde Parallel to spin axis 	Undock Move to TOZ Spin Up Perform tests Spin down Move to ISS	(mins) - TBD TBD Varied TBD TBD	Varied	Varied
		Dock	-		SICSN

	Vectran		Toro		Spectra		G/T Composite braid	
Factor of Safety	size (in)	total tether mass (kg)	size (in)	total tether mass (kg)	size (in)	total tether mass (kg)	size (in)	total tether mass (kg)
2	1/2	54.8	1/2	36.4	9/16	47.2	3/4	97.2
5	3/4	166.4	7/8	110	1	139.2	7/8	121.6
10 UNIVERSITY OF HOUSTON CULEN COLLEGE OF ENGINEERIN	1-1/8	274.8	1-1/8	180.4	1-1/2	307.6	1-5/16	292.4 SICSN

Cost, Propulsion, Docking Ports, Operational Status

