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Issue: Knowledge Gap In Long Term Effects Of Partial Gravity
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Introduction

“The effects of Martian gravity on

the human sensorimotor, cardiovascular, musculoskeletal, and
immune systems, as well as effects on behavior, general health
and performance,

are unknown.”

Source: International roadmap for artificial gravity research, November 2017, Gilles Clément
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Time, Forces, Technical Systems

In scope



Modifications - Constituent Elements Of The Testbed

In scope



Rudimentary Design Of The Tether System

In scope



Design Of Subsystems

Out of scope
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Interior Design Of The Testbed
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Short Term Human Adaptations To Rotating Platforms
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3 Body System
2 Space Vehicles Tethered To Pressurized Central Hub

The Central Hub Docks To ISS Intermittently
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Frame Assembly, Aluminium 2219
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No Superdraco Thrusters



Spin-up Thrusters Introduced In The Service Module

Hooks For Tether System Introduced
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Element

Crew Dragon
Prichal (UM) module
Progress MS

Soyuz 2-1b (UM + Progress)

Launch
Falcon 9

Development
Analysis, Integration, and testing

Sustaining operations

Grand Total

Cost

(million)

$310
$200*
$300*
$80
$62
$100*

$100%*

Quantity

2

Total cost

(million)

$620
$200*
$300*
$80
$124
$100%

$100*
$1524

WESS
(kg)

24000

4000
3290

31290



Spin up calculations for static radius @ 10 m

Assumptions:

The dragons are already at 10 m radius before start of spin-up. Radius of spin, r=10 m

Centripetal acceleration to be generated=1g

Therefore, Tangential velocity to be generated, a, = m/s

Time taken to spin up to enTend state, dt= 1200 sec (20 mins)

Mass of Dragon 1, m, = Mass of Dragon 2, m , = m, = 12,000 kg

Central hub is a solid sphere of mass, m,, = 7290 kg and radius, r,=2.5m
Thrust provided by augmented thruster, F_=F, =F,

Moment of Inertia of system, | =% mchrch2 + Zmdrd2 (Mlsphere+ Ml bodysystem)
=18,225 + 2,400,000
=2,418,225 kgm?
Tangential acceleration, a=ra
Angular acceleration,a=a, /T
= (dv,/dt) /r=(10m/s/12005s) /10 m= 1/1200 rad/s?
Torque=1_, Xxa
= 2015 kgm?/s®
Also, Torque =r F. + r,F, = 2rF
Therefore, thrust required by engine, F, = Torque / 2r
=2015/20
=100 kgm/s?
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Spin up calculations for pre-deployed radius to 10 m in 20 mins.

Augmenting the KDTU-80 thruster for the Progress MS as an example, as the spin thrusters on the crew dragons,

For the KDTU-80 on a Progress MS,
Maximum mass of fuel spent, dm = (Fx dt) /I_ x g,
~ (2950 x 830) /302 x 9.81
= 886 kg

For the KDTU-80 when augmented on the crew dragons, to perform the procedure described on the previous page,
Mass of fuel spent, dm_ = (F x dt) / ., X

= (100 x 1200) / 302 x 9.81

=40 kg

Therefore, If we spend 40 kg of fuel during spin-up and another 40 kg for spin-down, and if we keep the same sized
tanks and same specs,

No. of test operations possible before refueling = 886 / (40 x 2)
— 1
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Spin up calculations for r =40 m, spin up time = 10 mins

Augmenting the KDTU-80 thruster for the Progress MS as an example, as the spin thrusters on the crew dragons,

For the KDTU-80 on a Progress MS,
Maximum mass of fuel spent, dm = (Fx dt) /I_ x g,
~ (2950 x 830) /302 x 9.81
= 886 kg

For the KDTU-80 when augmented on the crew dragons, to perform the procedure described on the previous page,
Mass of fuel spent, dm_ = (F x dt) / |, X

= (500 x 600) / 302 x 9.81

=~100 kg

Therefore, If we spend 100 kg of fuel during spin-up and another 100 kg for spin-down, and if we keep the same
sized tanks and same specs,

No. of test operations possible before refueling = 886 /(100 x 2)
=~5



Backup
slides

Spin up calculations for r =10 m, spin up time = 60 mins

Augmenting the KDTU-80 thruster for the Progress MS as an example, as the spin thrusters on the crew dragons,

For the KDTU-80 on a Progress MS,
Maximum mass of fuel spent, dm = (Fx dt) /I_ x g,
~ (2950 x 830) /302 x 9.81
= 886 kg

For the KDTU-80 when augmented on the crew dragons, to perform the procedure described on the previous page,
Mass of fuel spent, dm_ = (F x dt) / |, X

= (43 x 3600) /302 x 9.81

=~50kg

Therefore, If we spend 50 kg of fuel during spin-up and another 50 kg for spin-down, and if we keep the same sized
tanks and same specs,

No. of test operations possible before refueling = 886 / (50 x 2)
=~9



Source: Adaptation in a rotating artificial gravity environment, James R. Lackner, Paul DiZio, 1998

Fig. 1. Illustration of the scalloping motion experienced during voluntary
pitch head movements and flexion—extension forearm movements made
during body rotation. When subjects are rotating counterclockwise (heavy
arrow) and pitch the head forward or extend the forearm they experience
a rightward deviation (thin arrows) from the intended path (dotted lines)
and the reverse when they raise the head or arm up. The scalloping
motion is in the direction of the Coriolis force generated. It is exaggerated
when the gravitoinertial force level increases and is almost abolished in
microgravity, both for the arm and head

Right Hand Left Hand

" Pre-rotation
© Per-rotation
*® Post-rotation

Fig. 3. Reaching movements made (averaged across eight subjects) in a study of intermanual transfer of adaptation to Coriolis forces in the rotating
(counterclockwise) room. Same view, scale and sampling as in Fig. 2A. Baselines were established for both hands pre-rotation, 80 reaches were made
per-rotation with the right hand to adapt it fully (not shown) to rotation. The initial p movements with the left hand went
straight (o0 a deviated endpoint. These movements mirrored the endpoint error but not the curvature of the initial per-rotation movements that had been
made with the right hand. With subsequent left handed reaches (not shown) endpoint error rapidly diminished. When subjects first reached with the right
hand after eight post-rotation movements of the left hand, their movements ended on target but arched symmetrically to the initial per-rotation reaches with
the right hand.

-100 10

Right
Fig. 5. Three-dimensional paths of typical pitch head movements made at 10 rpm counterclockwise in the rotating room. A point between the eyes was
wracked ot 100 Hz. The view s looking ghily down on the subject is fied reative to the subject’s torso. The icons
indicating hesd orintation are drawn smalle thanthe pltting scale. The solid rectanglesare pre-rotaton and the open rectangles pe-rotation. Pre-roation
T it o7 5 o o sty ghT w1 o kol v sl s e o R, Pt o D! & il devieed B St
of the Coriols forces gencrated and there i also rottion i yaw and roll Thee is a rapid return to the median plane with addiional per-rottion

movements (not shown) but the roll orientation of the head does not adapt as quickly.
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Source: Artificial Gravity Evidence Report, Human Research Program, Human Health Countermeasures Element, Version 6,

0.5

Gravity le

1
vel (g)

Figure 4. Dose-response curve of
perception of verticality versus gravi
level in parabolic flight. Mean of 6
subjects, 15-60 trials per subjects.
Subjects lying on their side were able to
accurately align their subjective vertical
with the gravitational vertical for
gravity levels ranging from 0.3 g to 1.8
g. Below 0.3 g they aligned their
subjective vertical with their long body
Adapted from Winkel et al. (2012).

Test Response To
Coriolis And
Related Effects.

Gilles Clément, 2015

Rotation Rate (rpm)

10
Radius (m)

Test Response To
Different Levels Of

Gravity.

Comfort
Zone

Figure 7. The rotation rate is
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Adapted from Wu (1999)

Test Response To
Different Rates Of

Angular Velocity
And Radii.




Backup

slides

Source: Space Settlement Population Rotation Tolerance, Al Globus, Theodore Hall, 2017

ROTATIONAL PARAMETERS AND COMFORT ZONE 600 ETiRAD 200FY Ll ‘I PREDICTED COMFORT
b B UPPER GRAVITY

BOUNDARY
40 FT

—— Nominal head motion boundary
Artificial gravity levels !

=~ RADIAL G'S

A0 OPTIMUM

ARTIFICIAL COMFORT
GRAVITY ZONE
3 (G'soF 60
Rotational | A\ % | - y CENTRIFIGAL

odus 1) FORCE) :
40|
. MOBILITY LIMIT

GRAVITY CANAL
ey GRADIENT SICKNESS
RSN By umIt MIT

Angulor velocity RPH)

ANGULAR
VELOCITY

epmi

CORIOLIS FORCE __~
LOCAL WEIGHT
=259

SPIN RATE (RADIANS/SEC.)

| oF
o 30% 20%15% 10% | 5% GRAVITY | CENTRIPETAL ACCELERATION (g} 0
0 10 20 30 40 50 | GRADIENT] !

CORIOLIS ACCELERATION + 026 CENTRIPETAL ACCELERATION  * TETHER MASS LIMIT:
‘Comfort chart [Hil 1962]. At 1g this chartsuggests that rates up o 4 rpm ar inthe comfort ROTATIONAL RATE (RPM) 20 40 70 100 200 FOR 3 FT SEC ' RADIAL VELOCITY 100,000 L8 MODULE AT EACH END. 2 adius (m)
Zone. (Note tha. between 1 and 2 o, and betveen 2 and 3, thre are intermediate tck marks. SPIN RADIUS AT LABORATORY MASS CENTER (FT) : KEVLAR. CYLINORICAL TETHER v S
conesponding o appromale 1.5and 25) Comfort chart [Gilruth 1969]. Here 6 rpm is the chosen limit to comfort. et ot ek et e b ok heniat Comfort chart [Cramer 1983]. Here 3 rpm is the motion sickness fimit Comfort chart[Stone 1973]. Again, 6 rpm s the imit of comfort

Test Response To
Different Rates Of
Angular Velocity
And Radii.

Test Response To Test Response To
Coriolis And Different Levels Of
Related Effects. Gravity.




Blest | i Risksand i
: Objectives : i Mitigations :

Acknowledgements : Introduction iScopeéComcept

Test Response To
Different Rates Of
Angular Velocity
And Radii.

Test Response To Test Response To
Coriolis And Different Levels Of
Related Effects. Gravity.




Test Objectives

In a free flying but non-spinning
condition, Confirm the following
systems work

T0 °

ECLSS

GNC

Power systems
Propulsion and AAC

Task

Undock

Move to TOZ

Park

Move to ISS

Dock

Duration RPM Radius
(mins)

TBD
20 (?) -

TBD



ID Test Objectives Task Duration RPM Radius
(mins)

Undock
In a free flying and spinning
condition. Confirm the following Move to TOZ TBD
systems work

e ECESS Spin Up TBD
T1 e GNC
e Power systems Perform tests 20 TBD TBD
e Propulsion and AAC
e Spin up and spin down Spin down TBD
system
e Tethering system Move to ISS TBD

Dock -



T2
T3
T4
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Test Objectives

Task

Spin down

Move to ISS

Dock

Duration
(mins)

RPM  Radius

Varied Varied



1D Test Objectives Task Duration RPM Radius
mihSy

Undock

Perform short term tests. In the Move to TOZ TBD
framework of papers listed:

o Jump and drop tests Spin Up TBD
o In-place motion tests
P1 o Lateral movements tests  Perform tests 20 TBD TBD
m prograde
m retrograde Spin down TBD

m parallel to spin axis
Move to ISS BD

Dock -



P2
P3
P4
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Test Objectives

etrograde
l'allel to spin axis

Task

Spin down

Move to ISS

Dock

Duration RPM Radius
(mins)

Varied Varied




Factor of

Safety

size (in)

total tether

mass (kg)

total tether mass

(kg)

size (in)

Spectra

total tether

mass (kg)

G/T Composite braid

size (in)

total tether mass

(kg)
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